派博傳思國際中心

標(biāo)題: Titlebook: Geometric Algorithms and Combinatorial Optimization; Martin Gr?tschel,László Lovász,Alexander Schrijver Book 1993Latest edition Springer-V [打印本頁]

作者: Ensign    時(shí)間: 2025-3-21 18:28
書目名稱Geometric Algorithms and Combinatorial Optimization影響因子(影響力)




書目名稱Geometric Algorithms and Combinatorial Optimization影響因子(影響力)學(xué)科排名




書目名稱Geometric Algorithms and Combinatorial Optimization網(wǎng)絡(luò)公開度




書目名稱Geometric Algorithms and Combinatorial Optimization網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Geometric Algorithms and Combinatorial Optimization被引頻次




書目名稱Geometric Algorithms and Combinatorial Optimization被引頻次學(xué)科排名




書目名稱Geometric Algorithms and Combinatorial Optimization年度引用




書目名稱Geometric Algorithms and Combinatorial Optimization年度引用學(xué)科排名




書目名稱Geometric Algorithms and Combinatorial Optimization讀者反饋




書目名稱Geometric Algorithms and Combinatorial Optimization讀者反饋學(xué)科排名





作者: galley    時(shí)間: 2025-3-21 20:41

作者: 不吉祥的女人    時(shí)間: 2025-3-22 02:19
Diophantine Approximation and Basis Reduction,simultaneous diophantine approximation, i. e., the problem of approximating a set of real numbers by rational numbers with a common small denominator. We offer an algorithmic study of lattices and diophantine approximation.
作者: exclusice    時(shí)間: 2025-3-22 07:26

作者: debble    時(shí)間: 2025-3-22 11:58
0937-5511 st pace as before. Nevertheless, we do not feel that the ongoing research has made this book outdated. Rather, it seems that many of the new results build on the models, algorithms, and theorems presented here. For instance, the celebrated Dyer-Frieze-Kannan algorithm for approximating the volume of
作者: 和平主義    時(shí)間: 2025-3-22 16:49

作者: 和平主義    時(shí)間: 2025-3-22 20:12

作者: reception    時(shí)間: 2025-3-23 00:08

作者: MAL    時(shí)間: 2025-3-23 01:45

作者: 大笑    時(shí)間: 2025-3-23 07:17

作者: 惰性女人    時(shí)間: 2025-3-23 09:58

作者: 籠子    時(shí)間: 2025-3-23 15:30
https://doi.org/10.1007/978-3-322-82354-0 of the polytopes associated with these problems. We indicate how these results can be employed to derive polynomial time algorithms based on the ellipsoid method and basis reduction. The results of this chapter are presented in a condensed form, to cover as much material as possible.
作者: 腐蝕    時(shí)間: 2025-3-23 21:04
Complexity, Oracles, and Numerical Computation,rk in which algorithms are designed and analysed in this book. We intend to stay on a more or less informal level; nevertheless, all notions introduced here can be made completely precise — see for instance ., . and . (1974), . and . (1979).
作者: 臆斷    時(shí)間: 2025-3-24 01:44

作者: 黑豹    時(shí)間: 2025-3-24 03:25
Combinatorial Optimization: Some Basic Examples,tion problems are formulated as linear programs. Chapter 8 contains a comprehensive survey of combinatorial problems to which these methods apply. Finally, in the last two chapters we discuss some more advanced examples in greater detail.
作者: 拱形面包    時(shí)間: 2025-3-24 08:07

作者: 光滑    時(shí)間: 2025-3-24 13:08
Geometric Algorithms and Combinatorial Optimization
作者: 闡釋    時(shí)間: 2025-3-24 17:21
Martin Gr?tschel,László Lovász,Alexander Schrijver
作者: commune    時(shí)間: 2025-3-24 19:07
Stable Sets in Graphs, classes of graphs which are in fact characterized by such a condition, most notably the class of perfect graphs. Using this approach, we shall develop a polynomial time algorithm for the stable set problem for perfect graphs. So far no purely combinatorial algorithm has been found to solve this pro
作者: 調(diào)色板    時(shí)間: 2025-3-24 23:27

作者: HUMP    時(shí)間: 2025-3-25 06:33
classes of graphs which are in fact characterized by such a condition, most notably the class of perfect graphs. Using this approach, we shall develop a polynomial time algorithm for the stable set problem for perfect graphs. So far no purely combinatorial algorithm has been found to solve this pro
作者: 強(qiáng)所    時(shí)間: 2025-3-25 07:34
0937-5511 no combinatorial polynomial time algorithms known for minimizing a submodular function or finding a maximum clique in a perfect graph. Moreover, despite the su978-3-642-78242-8978-3-642-78240-4Series ISSN 0937-5511 Series E-ISSN 2197-6783
作者: pester    時(shí)間: 2025-3-25 13:35
Wolfgang Graebner,Günter Schm?ldersn, less standard concepts and results are described. Among others, we treat oracle algorithms, encoding lengths, and approximation and computation of numbers, and we analyse the running time of Gaussian elimination and related procedures. The notions introduced in this chapter constitute the framewo
作者: 性別    時(shí)間: 2025-3-25 17:04

作者: Substitution    時(shí)間: 2025-3-25 20:12

作者: 新陳代謝    時(shí)間: 2025-3-26 01:22
Die Evolution des Begriffs Direktmarketing,c notion reflecting the main issues in linear programming is convexity, and we have discussed the main algorithmic problems on convex sets in the previous chapters. It turns out that it is also useful to formulate integrality constraints in a geometric way. This leads us to “l(fā)attices of points”. Suc
作者: 柔軟    時(shí)間: 2025-3-26 07:34
,Datenschutzrechtliche Zul?ssigkeit,ets. It turns out that the knowledge of such additional information on the convex sets in question extends the power of the ellipsoid method considerably. In particular, optimum solutions can be calculated exactly, boundedness and full-dimensionality assumptions can be dropped, and dual solutions ca
作者: 幾何學(xué)家    時(shí)間: 2025-3-26 09:38

作者: Modicum    時(shí)間: 2025-3-26 14:45
https://doi.org/10.1007/978-3-322-82354-0ction together with polyhedral information about these problems can be used to design polynomial time algorithms. In this chapter we give an overview about combinatorial optimization problems that are solvable in polynomial time. We also survey important theorems that provide polyhedral descriptions
作者: 高歌    時(shí)間: 2025-3-26 20:37

作者: 沒血色    時(shí)間: 2025-3-26 22:25
Ausblick auf verwandte Montageverfahren,ny combinatorial theorems and problems, submodularity is involved, in one form or another, and submodularity often plays an essential role in a proof or an algorithm. Moreover, analogous to the fast methods for convex function minimization, it turns out that submodular functions can also be minimize
作者: 窗簾等    時(shí)間: 2025-3-27 04:21
Würdigung der neueren Begründungen modified in order to check the feasibility of a system of linear inequalities in polynomial time. This result caused great excitement in the world of mathematical programming since it implies the polynomial time solvability of linear programming problems.
作者: 紡織品    時(shí)間: 2025-3-27 07:29
The Ellipsoid Method, modified in order to check the feasibility of a system of linear inequalities in polynomial time. This result caused great excitement in the world of mathematical programming since it implies the polynomial time solvability of linear programming problems.
作者: Ibd810    時(shí)間: 2025-3-27 11:34
Untersuchungsdesign und ErhebungsinstrumenteThis chapter summarizes mathematical background material from linear algebra, linear programming, and graph theory used in this book. We expect the reader to be familiar with the concepts treated here. We do not recommend to go thoroughly through all the definitions and results listed in the sequel — they are mainly meant for reference.
作者: 莊嚴(yán)    時(shí)間: 2025-3-27 14:06

作者: 賠償    時(shí)間: 2025-3-27 20:14

作者: indecipherable    時(shí)間: 2025-3-28 00:35

作者: dysphagia    時(shí)間: 2025-3-28 02:29

作者: expdient    時(shí)間: 2025-3-28 07:12

作者: 邊緣帶來墨水    時(shí)間: 2025-3-28 13:20
Geometric Algorithms and Combinatorial Optimization978-3-642-78240-4Series ISSN 0937-5511 Series E-ISSN 2197-6783
作者: 祝賀    時(shí)間: 2025-3-28 17:12

作者: BANAL    時(shí)間: 2025-3-28 22:32

作者: 芳香一點(diǎn)    時(shí)間: 2025-3-29 02:14
Algorithms for Convex Bodies, the algorithmic relations between problems (2.1.10),..., (2.1.14), and we will prove that — under certain assumptions — these problems are equivalent with respect to polynomial time solvability. Section 4.5 serves to show that these assumptions cannot be weakened. In Section 4.6 we investigate vari




歡迎光臨 派博傳思國際中心 (http://www.pjsxioz.cn/) Powered by Discuz! X3.5
集贤县| 昌平区| 宁安市| 西峡县| 平南县| 富阳市| 松滋市| 徐州市| 会同县| 高碑店市| 招远市| 和田市| 灵台县| 福清市| 白山市| 桦南县| 祥云县| 大姚县| 两当县| 泰顺县| 扎囊县| 西充县| 莒南县| 嘉义县| 虹口区| 乳源| 永济市| 沾益县| 洛浦县| 泾源县| 宁波市| 南平市| 新乡市| 大方县| 资阳市| 武宣县| 南郑县| 若尔盖县| 凤凰县| 南乐县| 杭锦后旗|