派博傳思國際中心

標(biāo)題: Titlebook: Geodesic and Horocyclic Trajectories; Fran?oise Dal’Bo Textbook 2011 Springer-Verlag London Limited 2011 Fuchsian group.Poincaré half plan [打印本頁]

作者: 貶損    時間: 2025-3-21 16:26
書目名稱Geodesic and Horocyclic Trajectories影響因子(影響力)




書目名稱Geodesic and Horocyclic Trajectories影響因子(影響力)學(xué)科排名




書目名稱Geodesic and Horocyclic Trajectories網(wǎng)絡(luò)公開度




書目名稱Geodesic and Horocyclic Trajectories網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Geodesic and Horocyclic Trajectories被引頻次




書目名稱Geodesic and Horocyclic Trajectories被引頻次學(xué)科排名




書目名稱Geodesic and Horocyclic Trajectories年度引用




書目名稱Geodesic and Horocyclic Trajectories年度引用學(xué)科排名




書目名稱Geodesic and Horocyclic Trajectories讀者反饋




書目名稱Geodesic and Horocyclic Trajectories讀者反饋學(xué)科排名





作者: 鍵琴    時間: 2025-3-21 21:25
Die Kontroverse um Neuronale Netzeof the modular group. We will use this coding in Chap.?IV to study the dynamics of the geodesic flow, and in Chap.?VII to translate the behavior of geodesic rays on the modular surface into the terms of Diophantine approximations.
作者: Negligible    時間: 2025-3-22 02:57

作者: ANTI    時間: 2025-3-22 06:48
Dynamics of Fuchsian groups,iemannian geometry, see Appendix?B..Sections?3 and?4 do not include many examples. Readers who prefer to see examples of Fuchsian groups before studying their properties are invited to browse through Chap.?II.
作者: STYX    時間: 2025-3-22 11:04
Examples of Fuchsian groups,of the modular group. We will use this coding in Chap.?IV to study the dynamics of the geodesic flow, and in Chap.?VII to translate the behavior of geodesic rays on the modular surface into the terms of Diophantine approximations.
作者: Optimum    時間: 2025-3-22 14:32

作者: Optimum    時間: 2025-3-22 17:25

作者: 政府    時間: 2025-3-23 00:17
The Lorentzian point of view,ly the dynamics of the horocycle and of the geodesic flows. Many proofs are reformulations of proofs given in the previous chapters. In this case, they are left to the reader. Appendix B can be useful in this chapter.
作者: 黃油沒有    時間: 2025-3-23 02:05

作者: murmur    時間: 2025-3-23 07:31

作者: 難取悅    時間: 2025-3-23 09:53

作者: superfluous    時間: 2025-3-23 14:37
Topological dynamics of the horocycle flow,he quotient of ..? by the Fuchsian group corresponding to .. In the geometrically finite case, we show that the horocycle flow is less topologically turbulent than the geodesic flow (Sect.?4)..Throughout this chapter, we use the definitions and notations associated with the dynamics of a flow as originally introduced in Appendix?A.
作者: Inflated    時間: 2025-3-23 18:41
Textbook 2011nces are reserved until the end of each chapter in the Comments section. Topics within the text cover geometry, and examples, of Fuchsian groups; topological dynamics of the geodesic flow; Schottky groups; the Lorentzian point of view and Trajectories and Diophantine approximations.
作者: parasite    時間: 2025-3-24 01:47
https://doi.org/10.1007/978-3-662-28982-2es of ..(...) in terms of sequences. As applications, we will construct, in the general case of a non-elementary Fuchsian group .′, trajectories of the geodesic flow on . which are neither periodic nor dense.
作者: 無政府主義者    時間: 2025-3-24 03:20

作者: 擔(dān)憂    時間: 2025-3-24 06:38

作者: insidious    時間: 2025-3-24 13:47

作者: Formidable    時間: 2025-3-24 17:06

作者: 高貴領(lǐng)導(dǎo)    時間: 2025-3-24 20:21
Topological dynamics of the horocycle flow,ur method is based on a correspondence between the set of horocycles of ? and the space of non-zero vectors in ?. modulo {±Id}. This vectorial point of view allows one to relate the topological dynamics of the linear action on ?. of a discrete subgroup . of SL(2,?) to that of the horocycle flow on t
作者: paltry    時間: 2025-3-25 00:45
The Lorentzian point of view, group associated with?. on {±Id}?.?{0}..Our motivation in this chapter, is to construct a linear representation of?. taking into account simultaneously the dynamics of the horocycle and of the geodesic flows. Many proofs are reformulations of proofs given in the previous chapters. In this case, the
作者: 教唆    時間: 2025-3-25 04:01

作者: Matrimony    時間: 2025-3-25 11:25
,Ziele ?ffentlicher Unternehmen,don’s “The geometry of discrete groups” Springer, New York ., A.?Katok’s and V.?Climenhaga’s “Lectures on Surfaces” American Mathematical Society, Providence ., and S.?Katok’s “Fuchsian groups” University of Chicago Press, Chicago .. The reader will find in these books the solutions of the exercises
作者: 群居男女    時間: 2025-3-25 14:52
Die Kontroverse um Neuronale Netzewill consider consists of geometrically finite free groups, called . groups. Its construction is based on the dynamics of isometries..The second family comes from number theory. It consists of three non-uniform lattices: the . group PSL(2,?), its congruence modulo 2 subgroup and its commutator subgr
作者: infantile    時間: 2025-3-25 19:12

作者: 手工藝品    時間: 2025-3-25 23:33
https://doi.org/10.1007/978-3-662-31626-9ur method is based on a correspondence between the set of horocycles of ? and the space of non-zero vectors in ?. modulo {±Id}. This vectorial point of view allows one to relate the topological dynamics of the linear action on ?. of a discrete subgroup . of SL(2,?) to that of the horocycle flow on t
作者: enflame    時間: 2025-3-26 00:24
https://doi.org/10.1007/978-3-322-88007-9 group associated with?. on {±Id}?.?{0}..Our motivation in this chapter, is to construct a linear representation of?. taking into account simultaneously the dynamics of the horocycle and of the geodesic flows. Many proofs are reformulations of proofs given in the previous chapters. In this case, the
作者: PRE    時間: 2025-3-26 07:59
Elemente betrieblicher Finanzentscheidungen,ions) which .. With these hypotheses, the surface .=.? admits finitely many cusps (see Sects.?I.3 and?I.4) (Fig.?VII.1)..As in the previous chapters, we let . denote the projection from ? to?.. In the first step, we study the excursions of a geodesic ray .([.,.)) into the cusp corresponding to the i
作者: 滔滔不絕地說    時間: 2025-3-26 12:26

作者: 人充滿活力    時間: 2025-3-26 16:22

作者: 牙齒    時間: 2025-3-26 19:40

作者: 礦石    時間: 2025-3-27 00:27
978-0-85729-072-4Springer-Verlag London Limited 2011
作者: facetious    時間: 2025-3-27 03:48
Geodesic and Horocyclic Trajectories978-0-85729-073-1Series ISSN 0172-5939 Series E-ISSN 2191-6675
作者: Delude    時間: 2025-3-27 06:05
https://doi.org/10.1007/978-0-85729-073-1Fuchsian group; Poincaré half plane; Schottky group; Topological dynamics; continued fraction; diophantin
作者: 指令    時間: 2025-3-27 12:56

作者: Fantasy    時間: 2025-3-27 15:04

作者: foodstuff    時間: 2025-3-27 19:22
Barrie Guntertverlagerungen in Entwicklungs- und Niedriglohnl?nder und die Wandlung von bisherigen Entwicklungs- und Schwellenl?ndern zu Industrienationen mit den entsprechenden Ver?nderungen in den jeweiligen Auβenhandelsstrukturen lassen einen weiteren Anstieg der Handelsaktivit?ten in der Weltwirtschaft erwar
作者: PRISE    時間: 2025-3-28 00:02
Top-, Manhattan Spatial Skyline Queriestions, where distances are measured in the .. metric. We present an algorithm that computes the top-. skyline points in near linear time in the size of .. The presented strategy improves over the direct approach of first using the state-of-the-art algorithm to compute the Manhattan spatial skyline?[
作者: 赤字    時間: 2025-3-28 05:19
sustainability are often difficult to isolate because of their vagueness. By developing a community resilience assessment measure, the chapter elucidates how one can operationalize the use of these concepts.
作者: CROAK    時間: 2025-3-28 07:35

作者: 闖入    時間: 2025-3-28 12:59
Mariia Arseenko,Julie Gheysen,Florent Hannard,Nicolas Nothomb,Aude Simar
作者: Obstruction    時間: 2025-3-28 16:19





歡迎光臨 派博傳思國際中心 (http://www.pjsxioz.cn/) Powered by Discuz! X3.5
黔西| 杭锦旗| 越西县| 准格尔旗| 罗定市| 济阳县| 宜阳县| 伊宁市| 枞阳县| 光泽县| 富阳市| 三门县| 万年县| 永善县| 沅陵县| 龙州县| 莆田市| 长治市| 伊川县| 观塘区| 咸宁市| 桐庐县| 盈江县| 苍梧县| 视频| 龙门县| 鲁山县| 昭苏县| 临颍县| 阿图什市| 铜鼓县| 淮滨县| 陵水| 遂溪县| 堆龙德庆县| 彰化市| 尚志市| 于都县| 昌黎县| 文安县| 来安县|