派博傳思國際中心

標(biāo)題: Titlebook: Genome Data Analysis; Ju Han Kim Textbook 2019 Springer Nature Singapore Pte Ltd. 2019 Genome data analysis.Bioinformatics.Practice in dat [打印本頁]

作者: mountebank    時間: 2025-3-21 20:08
書目名稱Genome Data Analysis影響因子(影響力)




書目名稱Genome Data Analysis影響因子(影響力)學(xué)科排名




書目名稱Genome Data Analysis網(wǎng)絡(luò)公開度




書目名稱Genome Data Analysis網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Genome Data Analysis被引頻次




書目名稱Genome Data Analysis被引頻次學(xué)科排名




書目名稱Genome Data Analysis年度引用




書目名稱Genome Data Analysis年度引用學(xué)科排名




書目名稱Genome Data Analysis讀者反饋




書目名稱Genome Data Analysis讀者反饋學(xué)科排名





作者: 一夫一妻制    時間: 2025-3-21 22:59
LSI/VLSI Board Level Guidelines,hanged genetic analysis from qualitative to quantitative. Next-generation sequencing (NGS) technology, by making analysis of the genomic sequences that form the basis of biological phenomena widely available, is constantly presenting new views on biological and disease-related phenomena. In the firs
作者: Munificent    時間: 2025-3-22 04:17
2509-6125 ormatics who are experiencing difficulty in approaching the field. However, it will also serve as a simple guideline for experts unfamiliar with the new, developing subfield of genomic analysis within bioinform978-981-13-1941-9978-981-13-1942-6Series ISSN 2509-6125 Series E-ISSN 2509-6133
作者: 懸崖    時間: 2025-3-22 05:09
Bioinformatics for Lifehanged genetic analysis from qualitative to quantitative. Next-generation sequencing (NGS) technology, by making analysis of the genomic sequences that form the basis of biological phenomena widely available, is constantly presenting new views on biological and disease-related phenomena. In the firs
作者: 盤旋    時間: 2025-3-22 10:18

作者: tooth-decay    時間: 2025-3-22 14:46

作者: tooth-decay    時間: 2025-3-22 18:21
Embodiment design considerations, various annotation and detection methods of SNP/InDel from the obtained sequences. This chapter describes the difference in analytical methods between common variants and rare variants, and an analysis approach using biological pathways, pharmacogenomics, and information of racial differences using
作者: 易受騙    時間: 2025-3-22 23:17
Das Konzept der dysfunktionalen Kognitionen,s approaches for adding SNP annotations and medicinal interpretations, using open sources based on personal genome data and genome variation information. This chapter will cover the following: (1) effective use of SNP data in SNPedia, (2) auto annotations of large volume of SNPs using Promethease ap
作者: 古文字學(xué)    時間: 2025-3-23 04:18

作者: 施加    時間: 2025-3-23 08:13

作者: 成份    時間: 2025-3-23 13:26
https://doi.org/10.1007/978-1-4842-3712-0ta. Analysis requires one to have a thorough understanding of basic biology. We will go over gene sets used to interpret data as well as analyzing data. DAVID, ArrayXPath are two apparatuses used to gather fundamental biological interpretation using gene sets given. BioLattice is also designed to an
作者: flaunt    時間: 2025-3-23 14:33

作者: 懦夫    時間: 2025-3-23 19:09

作者: 序曲    時間: 2025-3-24 00:24

作者: Lice692    時間: 2025-3-24 03:56

作者: Granular    時間: 2025-3-24 08:26

作者: micronized    時間: 2025-3-24 11:17
Ju Han KimDescribes recent advances in genomics and bioinformatics.Provides numerous examples of genome data analysis.Meets the needs of life scientists, medical scientists, and others who are new to the field
作者: airborne    時間: 2025-3-24 15:03
Mohamad Al Ali,Michal Tomko,Ivo DemjanThe objectives of this chapter are to teach generating DEGs in microarray gene expression data, extracting a gene cluster of genes with similar patterns of expression, classifying the observed data using SVM and KNN, and learning the basic syntax of the R program, a useful tool for genome data analysis.
作者: FLACK    時間: 2025-3-24 20:51
Mladen Kezunovic,Jinfeng Ren,Saeed LotfifardIn this chapter, in order to investigate the biological function, we will practice verifying existing knowledge with concurrent experiments on microarray data analysis to identify significant correlations of miRNA-mRNA pairs derived from the miRNA and mRNA analysis profile of the same sample.
作者: Nonthreatening    時間: 2025-3-25 02:48

作者: 能得到    時間: 2025-3-25 07:21

作者: NORM    時間: 2025-3-25 10:35
Gene Expression Data AnalysisThe objectives of this chapter are to teach generating DEGs in microarray gene expression data, extracting a gene cluster of genes with similar patterns of expression, classifying the observed data using SVM and KNN, and learning the basic syntax of the R program, a useful tool for genome data analysis.
作者: 輕率看法    時間: 2025-3-25 13:28

作者: 細(xì)微的差異    時間: 2025-3-25 16:46
Molecular Pathways and Gene OntologyThis chapter covers several topics: (1) understanding biomedical data and knowledge resources, such as gene ontology and biological pathways, (2) the practical use of these systems, and (3) biological text mining based on biomedical resources.
作者: 爭吵    時間: 2025-3-25 23:20

作者: Glutinous    時間: 2025-3-26 00:29

作者: 使堅硬    時間: 2025-3-26 05:08
Industrialisierung und Beginn des Designsd variants. A number of software programs have been developed to identify statistically significant and clinically relevant SNPs, predict disease risk, and identify disease-related rare variants. This chapter introduces various bioinformatics resources used for the interpretation of personal genomic data.
作者: Adherent    時間: 2025-3-26 11:25

作者: callous    時間: 2025-3-26 16:25
Mustapha Hamdi,Antoine Ferreirared genes obtained by microarray data clustering analysis and test the statistical significance of different prognoses between clusters. It provides an understanding of the correlation between biological interpretation and GO and pathway analysis of the clustered genes and an interpretation with GSEA of the clustered genes.
作者: 混合物    時間: 2025-3-26 17:26

作者: 積習(xí)難改    時間: 2025-3-26 23:39

作者: 代替    時間: 2025-3-27 01:30
Next-Generation Sequencing Technology and Personal Genome Data Analysis various annotation and detection methods of SNP/InDel from the obtained sequences. This chapter describes the difference in analytical methods between common variants and rare variants, and an analysis approach using biological pathways, pharmacogenomics, and information of racial differences using The 1000 Genomes Project Data.
作者: opinionated    時間: 2025-3-27 07:42
Personal Genome Interpretation and Disease Risk Predictiond variants. A number of software programs have been developed to identify statistically significant and clinically relevant SNPs, predict disease risk, and identify disease-related rare variants. This chapter introduces various bioinformatics resources used for the interpretation of personal genomic data.
作者: Talkative    時間: 2025-3-27 10:37
Gene Ontology and Biological Pathway-Based Analysista. Analysis requires one to have a thorough understanding of basic biology. We will go over gene sets used to interpret data as well as analyzing data. DAVID, ArrayXPath are two apparatuses used to gather fundamental biological interpretation using gene sets given. BioLattice is also designed to analyze the results of the data given.
作者: BRUNT    時間: 2025-3-27 16:40

作者: grandiose    時間: 2025-3-27 21:05
Motif and Regulatory Sequence Analysisenetic tree analysis (3) prediction of transcription factor and microRNA (miRNA) binding sites involved in gene regulation (4) visualization and exploration of sequence annotations using a genome browser.
作者: mutineer    時間: 2025-3-28 01:39
Biological Network Analysising based on existing publications. We will analyze evolutionary distance and connectivity so that we need to confirm that the protein interaction network is a scale-free network and hub genes are evolutionarily old proteins.
作者: OMIT    時間: 2025-3-28 04:59
978-981-13-1941-9Springer Nature Singapore Pte Ltd. 2019
作者: Brochure    時間: 2025-3-28 09:38

作者: 有法律效應(yīng)    時間: 2025-3-28 10:50
Das Konzept der dysfunktionalen Kognitionen,o diseases or drug responses by mapping with the pharmacogenomics knowledge base or biological pathways, and (5) practicums for acquiring and using allele frequencies among races based on public data of the 1000 genomes project.
作者: 陪審團    時間: 2025-3-28 16:05

作者: 入會    時間: 2025-3-28 22:33
2509-6125 ts, medical scientists, and others who are new to the field .This textbook describes recent advances in genomics and bioinformatics and provides numerous examples of genome data analysis that illustrate its relevance to real world problems and will improve the reader’s bioinformatics skills. Basic d
作者: 裂縫    時間: 2025-3-29 02:47
https://doi.org/10.1007/978-1-4020-6488-3s between case and control groups, to perform cluster and classification analysis, and to understand the importance of biological pathway analysis with the interpretation of microarray data using the GSEA program and R package.
作者: 全神貫注于    時間: 2025-3-29 05:50

作者: Salivary-Gland    時間: 2025-3-29 10:01

作者: 不透氣    時間: 2025-3-29 13:54
Textbook 2019evance to real world problems and will improve the reader’s bioinformatics skills. Basic data preprocessing with normalization and filtering, primary pattern analysis, and machine learning algorithms using R and Python are demonstrated for gene-expression microarrays, genotyping microarrays, next-ge
作者: Muffle    時間: 2025-3-29 15:49

作者: arthroplasty    時間: 2025-3-29 20:56

作者: 奇思怪想    時間: 2025-3-30 02:40
SNPs, GWAS, CNVs: Informatics for Human Genome VariationsNP, International HapMap Project, and PharmGKB. We will study the hypothesis of common and rare disease gene variations. Finally, this chapter will also go over the assumptions and method of analysis used by GWAS research and copy-number variation research and survey the future of genome diversity.
作者: Devastate    時間: 2025-3-30 04:10
Bioinformatics for Life informatics phenomena that take the form of sophisticated interactions between the materials that constitute living organisms, matter in general, and energy. As a consequence of the development of technology for acquiring vast amounts of biological information, molecular genetics has progressed fro
作者: 表兩個    時間: 2025-3-30 10:18
Next-Generation Sequencing Technology and Personal Genome Data Analysis various annotation and detection methods of SNP/InDel from the obtained sequences. This chapter describes the difference in analytical methods between common variants and rare variants, and an analysis approach using biological pathways, pharmacogenomics, and information of racial differences using
作者: 自制    時間: 2025-3-30 13:19
Personal Genome Data Analysiss approaches for adding SNP annotations and medicinal interpretations, using open sources based on personal genome data and genome variation information. This chapter will cover the following: (1) effective use of SNP data in SNPedia, (2) auto annotations of large volume of SNPs using Promethease ap
作者: 泄露    時間: 2025-3-30 16:41

作者: Apraxia    時間: 2025-3-30 23:17

作者: myopia    時間: 2025-3-31 02:36

作者: certain    時間: 2025-3-31 06:30
Gene Set Approaches and Prognostic Subgroup Predictionred genes obtained by microarray data clustering analysis and test the statistical significance of different prognoses between clusters. It provides an understanding of the correlation between biological interpretation and GO and pathway analysis of the clustered genes and an interpretation with GSE




歡迎光臨 派博傳思國際中心 (http://www.pjsxioz.cn/) Powered by Discuz! X3.5
买车| 阿城市| 拜泉县| 富民县| 华容县| 米脂县| 毕节市| 社旗县| 彩票| 昆山市| 柞水县| 梨树县| 徐闻县| 天峻县| 方城县| 三台县| 昭觉县| 丽江市| 乐都县| 酒泉市| 股票| 健康| 拉萨市| 宜城市| 祁阳县| 蕉岭县| 江永县| 丹东市| 威宁| 天气| 西充县| 宁远县| 颍上县| 阜新市| 仪陇县| 阳曲县| 商南县| 晋中市| 资溪县| 永泰县| 健康|