派博傳思國際中心

標題: Titlebook: Generative AI Security; Theories and Practic Ken Huang,Yang Wang,Jyoti Ponnapalli Book 2024 The Editor(s) (if applicable) and The Author(s) [打印本頁]

作者: 帳簿    時間: 2025-3-21 18:57
書目名稱Generative AI Security影響因子(影響力)




書目名稱Generative AI Security影響因子(影響力)學科排名




書目名稱Generative AI Security網(wǎng)絡公開度




書目名稱Generative AI Security網(wǎng)絡公開度學科排名




書目名稱Generative AI Security被引頻次




書目名稱Generative AI Security被引頻次學科排名




書目名稱Generative AI Security年度引用




書目名稱Generative AI Security年度引用學科排名




書目名稱Generative AI Security讀者反饋




書目名稱Generative AI Security讀者反饋學科排名





作者: 多山    時間: 2025-3-21 21:52
Generative AI Security978-3-031-54252-7Series ISSN 2662-2467 Series E-ISSN 2662-2475
作者: HACK    時間: 2025-3-22 02:31

作者: 智力高    時間: 2025-3-22 05:02

作者: 無脊椎    時間: 2025-3-22 09:06

作者: 幼兒    時間: 2025-3-22 16:58
https://doi.org/10.1007/978-1-4039-9019-8key policy elements like goals, risk management, compliance, consequences, and priority areas focused on model integrity, data privacy, resilience to attacks, and regulatory adherence. The chapter also covers specialized processes for GenAI across risk management, development cycles, and access gove
作者: 幼兒    時間: 2025-3-22 17:12

作者: 背信    時間: 2025-3-22 23:08
Basic principles and considerations,w of the security landscape for generative models. It begins by elucidating common vulnerabilities and attack vectors, including adversarial attacks, model inversion, backdoors, data extraction, and algorithmic bias. The practical implications of these threats are discussed, spanning domains like fi
作者: 預知    時間: 2025-3-23 05:10
Helping the person to feel better,nalysis of the OWASP Top 10 for LLM applications gives the initial context of security concerns of GenAI Applications. Leading application design paradigms including RAG, ReAct, and agent-based systems are explored, along with their security implications. Major cloud-based AI services and associated
作者: 暖昧關系    時間: 2025-3-23 08:21

作者: Charade    時間: 2025-3-23 11:08

作者: GRILL    時間: 2025-3-23 16:10

作者: Paradox    時間: 2025-3-23 18:24
https://doi.org/10.1007/978-3-031-54252-7Generative AI; Model Security; AI Ethics; Data Security; GenAI Security; DevSecOps; Data Privacy; GenAI App
作者: GNAW    時間: 2025-3-23 22:50
Ken Huang,Yang Wang,Jyoti PonnapalliExplores theories and practices of GenAI security.Offers actionable insights, hands-on resources, and critical thinking exercises.Equips readers with the knowledge and tools needed to navigate the com
作者: APNEA    時間: 2025-3-24 03:35

作者: Palter    時間: 2025-3-24 06:30

作者: Inelasticity    時間: 2025-3-24 13:51

作者: 搖曳    時間: 2025-3-24 14:53

作者: 大溝    時間: 2025-3-24 22:48
GenAI Data Security“oil” of the digital age, the chapter navigates data’s lifecycle from collection to disposal. The narrative underscores the importance of secure collection, preprocessing, storage, and transmission. The chapter delves into data provenance, stressing the need to understand, verify, and validate data’
作者: 高貴領導    時間: 2025-3-24 23:17
GenAI Model Securityw of the security landscape for generative models. It begins by elucidating common vulnerabilities and attack vectors, including adversarial attacks, model inversion, backdoors, data extraction, and algorithmic bias. The practical implications of these threats are discussed, spanning domains like fi
作者: 清醒    時間: 2025-3-25 05:44
GenAI Application Level Securitynalysis of the OWASP Top 10 for LLM applications gives the initial context of security concerns of GenAI Applications. Leading application design paradigms including RAG, ReAct, and agent-based systems are explored, along with their security implications. Major cloud-based AI services and associated
作者: 萬神殿    時間: 2025-3-25 07:41
From LLMOps to DevSecOps for GenAIoperationalizing GenAI models and applications. A detailed examination of implementing LLMOps across the model lifecycle is provided, encompassing activities like base model selection, prompt engineering, model tuning, deployment, and monitoring. Recognizing security as a critical priority, strategi
作者: 擁擠前    時間: 2025-3-25 14:34
Utilizing Prompt Engineering to Operationalize Cybersecuritynstructing specialized prompts that tap the power of GenAI for threat analysis, incident response, and security enhancement. Specific methods including few shot learning, Retrieval Augmented Generation, Chain of Thought, Tree of Thought, ReAct, and automated reasoning are elucidated to improve model
作者: gangrene    時間: 2025-3-25 19:54

作者: crumble    時間: 2025-3-25 21:17
Book 2024 advanced models, and the innovative strategies required to secure GenAI applications. Lastly, the book presents an in-depth analysis of the security challenges and potential solutions specific to GenAI, and a forward-looking view of how it can redefine cybersecurity practices. By addressing these t
作者: backdrop    時間: 2025-3-26 01:13

作者: llibretto    時間: 2025-3-26 06:32

作者: packet    時間: 2025-3-26 12:18
2662-2467 tly, the book presents an in-depth analysis of the security challenges and potential solutions specific to GenAI, and a forward-looking view of how it can redefine cybersecurity practices. By addressing these t978-3-031-54254-1978-3-031-54252-7Series ISSN 2662-2467 Series E-ISSN 2662-2475
作者: anaphylaxis    時間: 2025-3-26 13:48

作者: tendinitis    時間: 2025-3-26 19:34
Basic principles and considerations,he chapter aims to establish a conceptual foundation encompassing both the technical and ethical dimensions of security for generative AI. It highlights open challenges and lays the groundwork for developing robust, trustworthy, and human-centric solutions. The multifaceted perspective spanning vuln
作者: Aviary    時間: 2025-3-26 21:41

作者: 招惹    時間: 2025-3-27 04:58

作者: 多山    時間: 2025-3-27 08:10
,The Doctor–Counsellor Relationship,es for integrating DevSecOps into LLMOps are outlined, establishing security as a shared responsibility across the development and operational lifecycle. The chapter offers conceptual foundations and practical guidance for successfully navigating the intricacies of LLMOps.
作者: Parallel    時間: 2025-3-27 10:18
https://doi.org/10.1007/978-94-011-7721-4 capabilities on complex cybersecurity tasks. However, prudent practices are emphasized to address risks around adversarial attacks, biases, and ethical breaches. The chapter aims to equip security professionals with prompt engineering proficiencies to leverage GenAI responsibly based on principles of accountability and transparency.
作者: anesthesia    時間: 2025-3-27 15:38

作者: fetter    時間: 2025-3-27 21:26
GenAI Data Securitys journey. Training data management is highlighted, with a focus on how training data can impact model performance, data diversity, and responsible disposal. Throughout, the chapter accentuates the significance of trust, transparency, and responsibility, offering insights into best practices in GenAI data security.
作者: 我說不重要    時間: 2025-3-27 23:32

作者: Incommensurate    時間: 2025-3-28 02:25

作者: Verify    時間: 2025-3-28 09:28
Use GenAI Tools to Boost Your Security Posturelatforms to boost security, optimize workflows, and uphold transparency. Focus areas include leveraging GenAI tools to strengthen resilience, improve security posture, and promote responsible AI development.
作者: Increment    時間: 2025-3-28 10:34
https://doi.org/10.1007/978-1-4039-9019-8mi-centralized, and decentralized governance structures for GenAI security are also analyzed. Helpful framework resources including MITRE ATT&CK’s ATLAS Matrix, AI vulnerability databases, the Frontier Model Forum, Cloud Security Alliance initiatives, and OWASP’s Top 10 LLM Application risks are highlighted.
作者: 懲罰    時間: 2025-3-28 16:16
Helping the person to feel better,o GenAI. Examples grounded in banking connect security controls to real-world scenarios. Through multifaceted coverage of risks, design patterns, services, and control frameworks, the chapter equips readers with actionable insights on securing diverse GenAI applications by integrating security across the full application life cycle.
作者: Instantaneous    時間: 2025-3-28 21:19
Build Your Security Program for GenAImi-centralized, and decentralized governance structures for GenAI security are also analyzed. Helpful framework resources including MITRE ATT&CK’s ATLAS Matrix, AI vulnerability databases, the Frontier Model Forum, Cloud Security Alliance initiatives, and OWASP’s Top 10 LLM Application risks are highlighted.
作者: Parameter    時間: 2025-3-29 01:57

作者: 旋轉一周    時間: 2025-3-29 04:26

作者: Abutment    時間: 2025-3-29 08:35

作者: 收集    時間: 2025-3-29 15:10

作者: Aviary    時間: 2025-3-29 17:21

作者: expound    時間: 2025-3-29 21:31

作者: Gorilla    時間: 2025-3-30 02:15

作者: LUT    時間: 2025-3-30 06:21





歡迎光臨 派博傳思國際中心 (http://www.pjsxioz.cn/) Powered by Discuz! X3.5
肥东县| 抚远县| 左云县| 甘谷县| 托克托县| 商河县| 田阳县| 安庆市| 和顺县| 株洲县| 高淳县| 嘉善县| 察隅县| 安多县| 玉山县| 嘉禾县| 隆安县| 阜城县| 大兴区| 临潭县| 遵义市| 泗阳县| 左云县| 莱芜市| 平泉县| 乌恰县| 和龙市| 曲阳县| 德昌县| 滦南县| 平舆县| 平南县| 筠连县| 酒泉市| 同心县| 绥化市| 海城市| 万年县| 敖汉旗| 宁强县| 临沧市|