書目名稱Generalized Nash Equilibrium Problems, Bilevel Programming and MPEC影響因子(影響力)學(xué)科排名
書目名稱Generalized Nash Equilibrium Problems, Bilevel Programming and MPEC網(wǎng)絡(luò)公開度
書目名稱Generalized Nash Equilibrium Problems, Bilevel Programming and MPEC網(wǎng)絡(luò)公開度學(xué)科排名
書目名稱Generalized Nash Equilibrium Problems, Bilevel Programming and MPEC被引頻次
書目名稱Generalized Nash Equilibrium Problems, Bilevel Programming and MPEC被引頻次學(xué)科排名
書目名稱Generalized Nash Equilibrium Problems, Bilevel Programming and MPEC年度引用
書目名稱Generalized Nash Equilibrium Problems, Bilevel Programming and MPEC年度引用學(xué)科排名
書目名稱Generalized Nash Equilibrium Problems, Bilevel Programming and MPEC讀者反饋
書目名稱Generalized Nash Equilibrium Problems, Bilevel Programming and MPEC讀者反饋學(xué)科排名
作者: 幼稚 時間: 2025-3-21 22:40 作者: Adulate 時間: 2025-3-22 03:17
Optimality Conditions for Bilevel Programming: An Approach Through Variational Analysis,set and not described by any equalities and inequalities. In such a situation, we can view them as MPEC problems and develop necessary optimality conditions. We also relate various solution concepts in bilevel programming and establish some new connections. We study in considerable detail the notion作者: 束以馬具 時間: 2025-3-22 05:50
,Mechanism Design and Auctions for?Electricity Networks,nism design. Some of the results stemming from these models are the computation of an optimal allocation for the Independent System Operator, the study of equilibria (existence and uniqueness in particular) and the design of mechanisms to increase the social surplus. More generally, this field of re作者: osteoclasts 時間: 2025-3-22 12:43
Reflection Methods for Inverse Problems with Applications to Protein Conformation Determination,n of finitely many sets. In this chapter, we demonstrate that applied to a specific problem, the method can benefit from heuristics specific to said problem which exploit its special structure. In particular, we focus on the problem of protein conformation determination formulated within the framewo作者: Malaise 時間: 2025-3-22 16:10 作者: Malaise 時間: 2025-3-22 20:34 作者: MELON 時間: 2025-3-22 21:36 作者: STIT 時間: 2025-3-23 04:12
Generalized Nash Equilibrium Problems, Bilevel Programming and MPEC作者: Anguish 時間: 2025-3-23 07:18
Book 2017 solution set mapping of a parametric optimization problem. Chapter 2 describes a constraint qualification to MPECs considered as an application of calmness concept of multifunctions and is used to derive M-stationarity conditions for MPEC. Chapter 3 discusses the first- and second-order optimality 作者: anaphylaxis 時間: 2025-3-23 11:16
https://doi.org/10.1007/978-1-349-19867-2ufficient conditions ensuring that a set-valued map, in particular a normal operator, is single-valued. Any monotone set-valued map that is also lower semi-continuous at a given point of the interior of its domain is actually single-valued at this point. This famous result is due to Kenderov [.] in 作者: PET-scan 時間: 2025-3-23 17:21
Contemporary British Industrial Relationsolution set mapping of a second parametric optimization problem. To investigate them, their transformation into a one-level optimization problem is necessary. For that, different approaches can be used. Two of them are considered in this article: the transformation using the Karush–Kuhn–Tucker condi作者: HAWK 時間: 2025-3-23 20:22 作者: contradict 時間: 2025-3-23 22:29 作者: Infusion 時間: 2025-3-24 06:06 作者: 小畫像 時間: 2025-3-24 09:45 作者: Infantry 時間: 2025-3-24 10:50
https://doi.org/10.1007/978-1-349-19867-2rder to solve such difficult problem, a classical approach is to write the optimality conditions of each of the problems obtaining thus a variational inequality. If the objective functions are nondifferentiable, the variational inequality can be set-valued, that is defined by a point-to-set map. Ind作者: 共和國 時間: 2025-3-24 14:50 作者: 等級的上升 時間: 2025-3-24 20:59
Generalized Nash Equilibrium Problems, Bilevel Programming and MPEC978-981-10-4774-9Series ISSN 2364-6748 Series E-ISSN 2364-6756 作者: 橫截,橫斷 時間: 2025-3-25 00:27 作者: Bravado 時間: 2025-3-25 05:03 作者: 幼稚 時間: 2025-3-25 08:04
https://doi.org/10.1007/978-1-349-14805-9applying specially adapted CQs, we want to present here a variational-analytic approach to dual stationarity conditions for MPECs on the basis of Lipschitzian properties of the perturbed generalized equation. The focus will be on the so-called calmness property, ensuring an appropriate calculus rule for the Mordukhovich normal cone.作者: 抑制 時間: 2025-3-25 15:27
,Calmness as a Constraint Qualification for?M-Stationarity Conditions in MPECs,applying specially adapted CQs, we want to present here a variational-analytic approach to dual stationarity conditions for MPECs on the basis of Lipschitzian properties of the perturbed generalized equation. The focus will be on the so-called calmness property, ensuring an appropriate calculus rule for the Mordukhovich normal cone.作者: 茁壯成長 時間: 2025-3-25 18:17 作者: 說明 時間: 2025-3-25 21:31
Optimality Conditions for Bilevel Programming: An Approach Through Variational Analysis,itions. We also relate various solution concepts in bilevel programming and establish some new connections. We study in considerable detail the notion of partial calmness and its application to derive necessary optimality conditions and also give some illustrative examples.作者: 畏縮 時間: 2025-3-26 03:09 作者: ASTER 時間: 2025-3-26 05:12
Contemporary British Industrial Relationstion of this problem which leads to a nonsmooth optimization problem. Besides the resulting necessary optimality conditions, first solution algorithms for the bilevel problem using these transformations are presented.作者: 茁壯成長 時間: 2025-3-26 08:31
https://doi.org/10.1057/9781137429353lts we obtained recently. We also briefly discuss some ongoing related research. As an illustrative example, a section is devoted to the computation of the Independent System Operator response function for a symmetric binodal setting with piece-wise linear production cost functions.作者: 慢跑 時間: 2025-3-26 13:10 作者: Charade 時間: 2025-3-26 18:27 作者: 吵鬧 時間: 2025-3-26 21:23 作者: 執(zhí)拗 時間: 2025-3-27 05:08
Government values and policies,itions. We also relate various solution concepts in bilevel programming and establish some new connections. We study in considerable detail the notion of partial calmness and its application to derive necessary optimality conditions and also give some illustrative examples.作者: condescend 時間: 2025-3-27 07:07 作者: enchant 時間: 2025-3-27 10:18 作者: 掙扎 時間: 2025-3-27 16:21 作者: 哪有黃油 時間: 2025-3-27 19:04
Einige Thesen zum Begriff des Gegenstands,t eine durch das Subjekt mit-begrenzte Naturstruktur. Und andererseits bezeichnet ?Gegenstand“ eine Relation zwischen Subjekt und Objekt(en). Das aber bedeutet, da? der Gegenstandsproze? zwar unabh?ngig vom Subjekt prozessiert (d.h. existiert), aber nicht unabh?ngig von ihm ?sich“ entwickelt, und au作者: compel 時間: 2025-3-27 22:22
https://doi.org/10.1007/978-3-030-87364-6enn auch die Tatsache des Platzbedarfs des Verkehrs als ernste Drohung nicht übersehen werden darf. Wenn man h?rt, da? in den St?dten des amerikanischen Westens ca. 55 % der Fl?che nur dem Verkehr diene, so zeigt das ebenfalls eine kritische Situation.