派博傳思國際中心

標(biāo)題: Titlebook: Existence Theory for Nonlinear Integral and Integrodifferential Equations; Donal O’Regan,Maria Meehan Book 1998 Springer Science+Business [打印本頁]

作者: 漠不關(guān)心    時間: 2025-3-21 18:42
書目名稱Existence Theory for Nonlinear Integral and Integrodifferential Equations影響因子(影響力)




書目名稱Existence Theory for Nonlinear Integral and Integrodifferential Equations影響因子(影響力)學(xué)科排名




書目名稱Existence Theory for Nonlinear Integral and Integrodifferential Equations網(wǎng)絡(luò)公開度




書目名稱Existence Theory for Nonlinear Integral and Integrodifferential Equations網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Existence Theory for Nonlinear Integral and Integrodifferential Equations被引頻次




書目名稱Existence Theory for Nonlinear Integral and Integrodifferential Equations被引頻次學(xué)科排名




書目名稱Existence Theory for Nonlinear Integral and Integrodifferential Equations年度引用




書目名稱Existence Theory for Nonlinear Integral and Integrodifferential Equations年度引用學(xué)科排名




書目名稱Existence Theory for Nonlinear Integral and Integrodifferential Equations讀者反饋




書目名稱Existence Theory for Nonlinear Integral and Integrodifferential Equations讀者反饋學(xué)科排名





作者: Coronary-Spasm    時間: 2025-3-21 21:59

作者: 間接    時間: 2025-3-22 03:03
Frontiers of Mathematical Psychology while selected topics (which reflect the particular interests of the authors) such as nonresonance and resonance problems, equations in Banach spaces, inclusions, and stochastic equations are presented in the latter part.
作者: Malaise    時間: 2025-3-22 08:10

作者: heterodox    時間: 2025-3-22 10:01
https://doi.org/10.1007/978-1-4613-2181-1 having knowledge of the eigenvalues of .. We present an existence principle which establishes the existence of a solution . ∈ . of (6.1.1), and from this we obtain an existence result for (6.1.2) when the nonlinear operator . satisfies a growth condition.
作者: 捏造    時間: 2025-3-22 16:48

作者: 捏造    時間: 2025-3-22 18:04

作者: 離開    時間: 2025-3-22 23:27
Existence Theory for Nonlinear Fredholm and Volterra Integral Equations on Half-Open Intervals,solution . ∈ .[0, ∞) of (5.1.1) when . = ∞. Examining the Volterra integral equation independently, yields a further two existence principles providing us with conditions under which a solution . ∈ ..[0, .) or . ∈ .[0, .) exists for (5.1.2). Using the existence principles established, several existence results are presented for both equations.
作者: 青春期    時間: 2025-3-23 04:47
Existence Theory for Nonlinear Nonresonant Operator and Integral Equations, having knowledge of the eigenvalues of .. We present an existence principle which establishes the existence of a solution . ∈ . of (6.1.1), and from this we obtain an existence result for (6.1.2) when the nonlinear operator . satisfies a growth condition.
作者: Psa617    時間: 2025-3-23 06:11
Periodic Solutions for Operator Equations,.1) reduces to a first order differential equation, namely, . there are many results in the literature (here: [0, .] × . → . is a ..-Carathéodory function); we refer the reader to [., ., ., .]. The ideas in this chapter were adapted from Meehan and O’Regan [.].
作者: CARK    時間: 2025-3-23 11:36
nce is an age-old problem of major importance. This mono- graph is a collection of some of the most advanced results to date in this field. The book is organized as follows. It is divided into twelve chap- ters. Each chapter surveys a major area of research. Specifically, some of the areas considere
作者: Exonerate    時間: 2025-3-23 17:07

作者: cardiopulmonary    時間: 2025-3-23 20:55

作者: micronized    時間: 2025-3-24 01:11
https://doi.org/10.1007/978-1-4615-3856-1on of solutions to (9.1.2) (or more generally (9.1.1)) involves using a new fixed point approach for equations on the half line (see [., .–.]) together with the well known notion of strict convergence (see [.–.]). The ideas presented were adapted from [., .].
作者: Cytology    時間: 2025-3-24 03:24
Integral Inclusions,ed from Deimling [.], Frigon [.] and O’Regan [.]. In particular the technique used in this chapter relies on Ky Fan’s or Schauder’s Fixed Point Theorem [.] together with a trick introduced in [.] and a result of Fitzpatrick and Petryshyn [.].
作者: 犬儒主義者    時間: 2025-3-24 10:25
Approximation of Solutions of Operator Equations on the Half Line,on of solutions to (9.1.2) (or more generally (9.1.1)) involves using a new fixed point approach for equations on the half line (see [., .–.]) together with the well known notion of strict convergence (see [.–.]). The ideas presented were adapted from [., .].
作者: ANTIC    時間: 2025-3-24 12:47

作者: 一再遛    時間: 2025-3-24 15:49

作者: Albinism    時間: 2025-3-24 19:23
978-94-010-6095-0Springer Science+Business Media Dordrecht 1998
作者: Recessive    時間: 2025-3-25 00:29

作者: daredevil    時間: 2025-3-25 04:41
Sexuality in a Zero Growth Societyhe compact interval [0, .], and the half-open interval [0, .]. Various cases of the operator . will be discussed. In particular we consider cases when . is composed of either Fredholm or Volterra integral operators, which when coupled with (2.1.1), provide us with existence principles for Fredholm a
作者: 一起平行    時間: 2025-3-25 09:12

作者: 饑荒    時間: 2025-3-25 12:35

作者: CAJ    時間: 2025-3-25 19:15

作者: 享樂主義者    時間: 2025-3-25 20:55

作者: 最低點    時間: 2025-3-26 03:38

作者: Instrumental    時間: 2025-3-26 07:25

作者: 報復(fù)    時間: 2025-3-26 11:36
Frontiers of Quality Electronic Design (QED)cular on the idea of an essential map. In section 11.3 our fixed point theory will then be applied to obtain a general existence principle for stochastic integral equations of Volterra type. This principle will then be used to establish the existence of sample solutions to a class of stochastic inte
作者: Choreography    時間: 2025-3-26 14:29

作者: Aggressive    時間: 2025-3-26 17:05
Sexuality in a Zero Growth Societyhe compact interval [0, .], and the half-open interval [0, .]. Various cases of the operator . will be discussed. In particular we consider cases when . is composed of either Fredholm or Volterra integral operators, which when coupled with (2.1.1), provide us with existence principles for Fredholm and Volterra integrodifferential equations.
作者: 明智的人    時間: 2025-3-26 23:23

作者: Conserve    時間: 2025-3-27 03:04

作者: exigent    時間: 2025-3-27 08:19
https://doi.org/10.1007/978-981-99-8258-5Having discussed nonresonant operator and integral equations in Chapter 6, we now turn our attention to the more difficult problem of providing an existence theory for resonant operator and integral equations.
作者: left-ventricle    時間: 2025-3-27 10:01
Existence Theory for Nonlinear Fredholm and Volterra Integral Equations on Compact Intervals,In this chapter we present existence theory for the nonlinear Fredholm integral equation .and the nonlinear Volterra integral equation .when both are defined on the compact interval [0, .]. Naturally we first concern ourselves with existence principles for both equations.
作者: Asymptomatic    時間: 2025-3-27 16:12
Existence Theory for Nonlinear Resonant Operator and Integral Equations,Having discussed nonresonant operator and integral equations in Chapter 6, we now turn our attention to the more difficult problem of providing an existence theory for resonant operator and integral equations.
作者: 知識    時間: 2025-3-27 19:00

作者: 群居動物    時間: 2025-3-28 00:23
https://doi.org/10.1007/978-94-011-4992-1Integral equation; differential equation; ordinary differential equation; ordinary differential equatio
作者: 敏捷    時間: 2025-3-28 05:49
Introduction and Preliminaries,me specialised topics in integral equations which we hope will inspire further research in the area. To this end, the first part of the book deals with existence principles and results for nonlinear, Fredholm and Volterra integral and integrodifferential equations on compact and half-open intervals,
作者: Incommensurate    時間: 2025-3-28 08:56

作者: etidronate    時間: 2025-3-28 10:52

作者: Delectable    時間: 2025-3-28 18:05
Existence Theory for Nonlinear Fredholm and Volterra Integral Equations on Half-Open Intervals,, with 0 ≤ . ≤ ∞. We present a comprehensive collection of existence principles for (5.1.1) and (5.1.2). In particular we establish the existence of a solution . ∈ ..[0, .) (1 ≤ . < ∞) of both equations, the existence of a solution . ∈ ..[0, ∞) of both equations (with . = ∞), and the existence of a
作者: 諂媚于性    時間: 2025-3-28 21:55

作者: Mere僅僅    時間: 2025-3-28 23:33
Integral Inclusions,usion . Here . : [0, .] × . → . is a multivalued map with nonempty compact values; . is a real Banach space. In section 8.2 we present some existence results for (8.1.1) and (8.1.2) when . is a Carathéodory multifunction of u.s.c. or l.s.c. type satisfying some measure of noncompactness assumption.
作者: Bombast    時間: 2025-3-29 03:37

作者: 牛的細(xì)微差別    時間: 2025-3-29 10:10
Operator Equations in Banach Spaces Relative to the Weak Topology,[., .] and their references (and also Chapter 8). However only a few results have been obtained for equations in a Banach space relative to the weak topology. The first paper [.] appeared in 1971. There Szep discussed in detail the abstract Cauchy problem . with: [0, .] × . → . a weakly-weakly conti
作者: 雪崩    時間: 2025-3-29 14:10
Stochastic Integral Equations,cular on the idea of an essential map. In section 11.3 our fixed point theory will then be applied to obtain a general existence principle for stochastic integral equations of Volterra type. This principle will then be used to establish the existence of sample solutions to a class of stochastic inte
作者: JAUNT    時間: 2025-3-29 16:53
Periodic Solutions for Operator Equations,ator and . takes values in .. By a solution to (12.1.1) we mean a function . ∈ .[0, .] with . satisfying the equation in (12.1.1) almost everywhere and with .(0) = .(.). In this abstract setting very little is known concerning the existence of solutions to (12.1.1). In the particular case when (12.1
作者: 噱頭    時間: 2025-3-29 20:18
Existence Theory for Nonlinear Integral and Integrodifferential Equations
作者: 恭維    時間: 2025-3-30 03:19





歡迎光臨 派博傳思國際中心 (http://www.pjsxioz.cn/) Powered by Discuz! X3.5
琼结县| 讷河市| 普定县| 乌海市| 图木舒克市| 荆门市| 虎林市| 楚雄市| 蒲江县| 搜索| 黄大仙区| 黑龙江省| 乌拉特前旗| 麻阳| 米脂县| 安龙县| 萍乡市| 南康市| 西青区| 蒙山县| 凤台县| 青田县| 黎平县| 北辰区| 长乐市| 漾濞| 峡江县| 百色市| 滦平县| 个旧市| 康平县| 南岸区| 杭锦后旗| 宁陵县| 富民县| 云龙县| 水城县| 广州市| 广丰县| 太仓市| 新野县|