標(biāo)題: Titlebook: Exact Boundary Controllability of Nodal Profile for Quasilinear Hyperbolic Systems; Tatsien Li,Ke Wang,Qilong Gu Book 2016 The Author(s) 2 [打印本頁(yè)] 作者: advocate 時(shí)間: 2025-3-21 16:54
書目名稱Exact Boundary Controllability of Nodal Profile for Quasilinear Hyperbolic Systems影響因子(影響力)
書目名稱Exact Boundary Controllability of Nodal Profile for Quasilinear Hyperbolic Systems影響因子(影響力)學(xué)科排名
書目名稱Exact Boundary Controllability of Nodal Profile for Quasilinear Hyperbolic Systems網(wǎng)絡(luò)公開(kāi)度
書目名稱Exact Boundary Controllability of Nodal Profile for Quasilinear Hyperbolic Systems網(wǎng)絡(luò)公開(kāi)度學(xué)科排名
書目名稱Exact Boundary Controllability of Nodal Profile for Quasilinear Hyperbolic Systems被引頻次
書目名稱Exact Boundary Controllability of Nodal Profile for Quasilinear Hyperbolic Systems被引頻次學(xué)科排名
書目名稱Exact Boundary Controllability of Nodal Profile for Quasilinear Hyperbolic Systems年度引用
書目名稱Exact Boundary Controllability of Nodal Profile for Quasilinear Hyperbolic Systems年度引用學(xué)科排名
書目名稱Exact Boundary Controllability of Nodal Profile for Quasilinear Hyperbolic Systems讀者反饋
書目名稱Exact Boundary Controllability of Nodal Profile for Quasilinear Hyperbolic Systems讀者反饋學(xué)科排名
作者: cancellous-bone 時(shí)間: 2025-3-21 23:01
Tatsien Li,Ke Wang,Qilong GuIntroduces new and useful controllability to readers.Establishes a complete theory on the local exact boundary controllability of nodal profile for 1-D quasilinear hyperbolic systems.Illerstrate the c作者: 琺瑯 時(shí)間: 2025-3-22 02:23 作者: 到婚嫁年齡 時(shí)間: 2025-3-22 05:52 作者: conifer 時(shí)間: 2025-3-22 10:57
Caiyun Ma,Shoushui Wei,Chengyu LiuConsider the following 1-D quasilinear wave equation.作者: Nonthreatening 時(shí)間: 2025-3-22 14:42
Norbert Jankowski,Krzysztof GrabczewskiIn this chapter, semi-global classical solutions on a single interval will be generalized to semi-global piecewise classical solutions on a tree-like network.作者: Nonthreatening 時(shí)間: 2025-3-22 19:06
Aswini Kumar Samantaray,Amol D. RahulkarA complete theory on the local exact boundary controllability for 1-D quasilinear hyperbolic systems has been established in [11, 12, 16–18].作者: FLEET 時(shí)間: 2025-3-22 21:59 作者: 微枝末節(jié) 時(shí)間: 2025-3-23 02:38
First Order Quasilinear Hyperbolic Systems,We consider the following 1-D first order quasilinear system.作者: 控訴 時(shí)間: 2025-3-23 06:58
Quasilinear Wave Equations,Consider the following 1-D quasilinear wave equation.作者: Compatriot 時(shí)間: 2025-3-23 11:10
Semi-global Piecewise Classical Solutions on a Tree-Like Network,In this chapter, semi-global classical solutions on a single interval will be generalized to semi-global piecewise classical solutions on a tree-like network.作者: blithe 時(shí)間: 2025-3-23 14:28
Exact Boundary Controllability of Nodal Profile for 1-D First Order Quasilinear Hyperbolic Systems,A complete theory on the local exact boundary controllability for 1-D quasilinear hyperbolic systems has been established in [11, 12, 16–18].作者: 裝勇敢地做 時(shí)間: 2025-3-23 18:38
Exact Boundary Controllability of Nodal Profile for 1-D Quasilinear Wave Equations on a Planar TreeIn this Chapter, we will generalize the exact boundary controllability of nodal profile for 1-D quasilinear wave equations in a single string, discussed in Chap.?., to that on a planar tree-like network of strings with general topology (see Wang and Gu [22]. For the corresponding result on the exact boundary controllability, cf. Gu and Li [6]).作者: Fierce 時(shí)間: 2025-3-23 22:11
Hui Wang,David Bell,Fionn Murtaghspatial interval, discussed in Chap.?., to that on a tree-like network. A general framework can be established for general 1-D first order quasilinear hyperbolic systems with general nonlinear boundary conditions and general nonlinear interface conditions, provided that there are full of boundary co作者: 背信 時(shí)間: 2025-3-24 04:32
Latent Semantic Feature Extraction,e (see [12, 19]). In this Chapter, we will show that, based on the results given in Chap.?., this constructive method can be elegantly modified to get the local exact boundary controllability of nodal profile for 1-D quasilinear wave equations (see Wang [21]).作者: scotoma 時(shí)間: 2025-3-24 08:01
Exact Boundary Controllability of Nodal Profile for Quasilinear Hyperbolic Systems978-981-10-2842-7Series ISSN 2191-8198 Series E-ISSN 2191-8201 作者: Flounder 時(shí)間: 2025-3-24 13:06 作者: 圣人 時(shí)間: 2025-3-24 17:42
Exact Boundary Controllability of Nodal Profile for 1-D Quasilinear Wave Equations,e (see [12, 19]). In this Chapter, we will show that, based on the results given in Chap.?., this constructive method can be elegantly modified to get the local exact boundary controllability of nodal profile for 1-D quasilinear wave equations (see Wang [21]).作者: 文字 時(shí)間: 2025-3-24 20:53 作者: 罵人有污點(diǎn) 時(shí)間: 2025-3-25 02:47
Exact Boundary Controllability of Nodal Profile for 1-D Quasilinear Wave Equations,e (see [12, 19]). In this Chapter, we will show that, based on the results given in Chap.?., this constructive method can be elegantly modified to get the local exact boundary controllability of nodal profile for 1-D quasilinear wave equations (see Wang [21]).作者: 監(jiān)禁 時(shí)間: 2025-3-25 05:00
Book 2016ng a modular-structure construtive method, suggested in LI Tatsien‘s monograph "Controllability and Observability for Quasilinear Hyperbolic Systems"(2010), and we establish a complete theory on the local exact boundary controllability ofnodal profile for 1-D quasilinear hyperbolic systems..作者: ERUPT 時(shí)間: 2025-3-25 07:51
Exact Boundary Controllability of Nodal Profile for Quasilinear Hyperbolic Systems作者: 構(gòu)成 時(shí)間: 2025-3-25 11:53
2191-8198 ility and Observability for Quasilinear Hyperbolic Systems"(2010), and we establish a complete theory on the local exact boundary controllability ofnodal profile for 1-D quasilinear hyperbolic systems..978-981-10-2841-0978-981-10-2842-7Series ISSN 2191-8198 Series E-ISSN 2191-8201 作者: 銼屑 時(shí)間: 2025-3-25 18:13 作者: HACK 時(shí)間: 2025-3-25 20:55 作者: larder 時(shí)間: 2025-3-26 00:48
Hui Wang,David Bell,Fionn Murtagh hyperbolic systems with general nonlinear boundary conditions and general nonlinear interface conditions, provided that there are full of boundary controls in both boundary conditions and interface conditions (see Gu and Li [8]).作者: COLIC 時(shí)間: 2025-3-26 07:05
Exact Boundary Controllability of Nodal Profile for 1-D First Order Quasilinear Hyperbolic Systems hyperbolic systems with general nonlinear boundary conditions and general nonlinear interface conditions, provided that there are full of boundary controls in both boundary conditions and interface conditions (see Gu and Li [8]).作者: Foam-Cells 時(shí)間: 2025-3-26 08:32 作者: 態(tài)學(xué) 時(shí)間: 2025-3-26 14:28
https://doi.org/10.1007/3-7985-1558-1te the performance of WMN-CS considering different distributions of mesh clients. Simulation results show that for Normal distribution of mesh clients, the WMN-CS can find suitable mesh router locations for 30 phases. However, 200 phases are insufficient for WMN-CS convergence in case of Exponential and Weibull distributions.作者: 縮影 時(shí)間: 2025-3-26 17:24 作者: thwart 時(shí)間: 2025-3-27 00:30 作者: 貪心 時(shí)間: 2025-3-27 01:54
Helan Xu,Yiqi Yangbiological with physical and chemical processes; the biotransformation of aromatic amines; reactor modelling for azo dye conversion; the biodegradation of azo dyes by immobilized bacteria and fungi; and factors affecting the complete mineralization of azo dyes.978-3-642-26316-3978-3-642-11847-0Series ISSN 1867-979X Series E-ISSN 1616-864X 作者: 思想 時(shí)間: 2025-3-27 07:32
Ectopic Foci Study on the Crest Terminalis in 3D Computer Model of Human Atrial,egetation. The type of geometric information stored in a layer can be very different: the layer for a road map could store the roads as collections of line segments (or curves, perhaps), the layer for cities could contain points labeled with city names, and the layer for vegetation could store a sub作者: 簡(jiǎn)略 時(shí)間: 2025-3-27 13:18
phthalmology, pediatric surgery and general surgerySurgical Robotics: Systems Applications and Visions is an ideal volume for researchers and engineers working in biomedical engineering.978-1-4899-7788-5978-1-4419-1126-1作者: DALLY 時(shí)間: 2025-3-27 16:28 作者: 云狀 時(shí)間: 2025-3-27 20:42
Allgemein-relativistische Physik,Als wir die Grenzen der Speziellen Relativit?tstheorie skizzierten, stie?en wir, abgesehen von der Problematik um die Quantentheorie und Elementarteilchenphysik, auf folgende Barrieren:作者: Felicitous 時(shí)間: 2025-3-27 22:49