派博傳思國際中心

標題: Titlebook: Equidistribution in Number Theory, An Introduction; Andrew Granville,Zeév Rudnick Conference proceedings 20071st edition Springer Science+ [打印本頁]

作者: OAK    時間: 2025-3-21 16:50
書目名稱Equidistribution in Number Theory, An Introduction影響因子(影響力)




書目名稱Equidistribution in Number Theory, An Introduction影響因子(影響力)學科排名




書目名稱Equidistribution in Number Theory, An Introduction網(wǎng)絡(luò)公開度




書目名稱Equidistribution in Number Theory, An Introduction網(wǎng)絡(luò)公開度學科排名




書目名稱Equidistribution in Number Theory, An Introduction被引頻次




書目名稱Equidistribution in Number Theory, An Introduction被引頻次學科排名




書目名稱Equidistribution in Number Theory, An Introduction年度引用




書目名稱Equidistribution in Number Theory, An Introduction年度引用學科排名




書目名稱Equidistribution in Number Theory, An Introduction讀者反饋




書目名稱Equidistribution in Number Theory, An Introduction讀者反饋學科排名





作者: elucidate    時間: 2025-3-21 23:09
1568-2609 hold a school on “Equidistribution in number theory” to introduce junior researchers to these beautiful questions, and to determine whether di?erent approaches can in uence one another. There are far more good978-1-4020-5403-7978-1-4020-5404-4Series ISSN 1568-2609
作者: anus928    時間: 2025-3-22 00:47
Equidistribution in Number Theory, An Introduction
作者: 逢迎春日    時間: 2025-3-22 06:02
Rahul Sharma,Pradip Sircar,Ram Bilas PachoriWe give a relatively easy proof of the Erd?s-Kac theorem via computing moments. We show how this proof extends naturally in a sieve theory context, and how it leads to several related results in the literature.
作者: PAEAN    時間: 2025-3-22 09:09
Mark Phillips B.Sc., LL.B., B.C.L.What follows is an expanded version of my lectures at the NATO School on Equidistribution. I have tried to keep the informal style of the lectures. In particular, I have sometimes oversimplified matters in order to convey the spirit of an argument.
作者: 做作    時間: 2025-3-22 14:10

作者: 做作    時間: 2025-3-22 19:58
Application of Data Mining Techniques,The most important analytic method for handling equidistribution questions about rational points on algebraic varieties is undoubtedly the Hardy– Littlewood circle method. There are a number of good texts available on the circle method, but the reader may particularly wish to study the books (Davenport, 2005) and (Vaughan, 1997).
作者: 光滑    時間: 2025-3-22 21:22

作者: 果仁    時間: 2025-3-23 02:59

作者: Forage飼料    時間: 2025-3-23 09:15
Fracture Mechanics 1975 — An OverviewWe give examples of how classifying invariant probability measures for specific algebraic actions can be used to prove density and equidistribution results in number theory.
作者: Ruptured-Disk    時間: 2025-3-23 13:43
,SIEVING AND THE ERD?S–KAC THEOREM,We give a relatively easy proof of the Erd?s-Kac theorem via computing moments. We show how this proof extends naturally in a sieve theory context, and how it leads to several related results in the literature.
作者: frivolous    時間: 2025-3-23 15:50
THE DISTRIBUTION OF PRIME NUMBERS,What follows is an expanded version of my lectures at the NATO School on Equidistribution. I have tried to keep the informal style of the lectures. In particular, I have sometimes oversimplified matters in order to convey the spirit of an argument.
作者: PRE    時間: 2025-3-23 21:20
THE DISTRIBUTION OF ROOTS OF A POLYNOMIAL,How are the roots of a polynomial distributed (in ?)? The question is too vague for if one chooses one’s favourite complex numbers z., z., ?, z. then the polynomial Π..(x - z.) has its roots at these points.
作者: Ptosis    時間: 2025-3-23 23:05

作者: 星星    時間: 2025-3-24 03:23

作者: Nausea    時間: 2025-3-24 07:59

作者: bacteria    時間: 2025-3-24 11:39

作者: 東西    時間: 2025-3-24 17:27
https://doi.org/10.1007/978-1-4020-5404-4Chemistry; Mathematics; NATO; Physics; Prime; Prime number; Science; Series II; algebraic varieties; calculus
作者: Cabinet    時間: 2025-3-24 19:00
Saket Verma,L. M. Das,S. C. Kaushikistribution and, in turn, the bounding of relevant exponential sums. Several of the bounds we give have since been quantitatively sharpened, by Garaev (Garaev, 2005) and, spectacularly so, in recent work of Bourgain (Bourgain, 2004; Bourgain, 2005).
作者: Herd-Immunity    時間: 2025-3-25 02:40
https://doi.org/10.1007/978-3-319-23537-0jective hyper-surfaces; in Ullmo’s course we study Galois orbits and Duke’s lectures deal with CM-points on the modular curve. This lecture concerns one of the earliest examples, namely torsion points on group varieties.
作者: impale    時間: 2025-3-25 06:14
The World of Dimensions in Craft,hlighting the use of universal torsors in such counting problems. To illustrate the method, we provide a proof of Manin’s conjecture for the unique split singular quartic Del Pezzo surface with a singularity of type ...
作者: Herpetologist    時間: 2025-3-25 10:31
Sachin Mishra,S. K. Singal,D. K. Khatod 2006). I will then survey the problem of quantum equidistribution for this model. This model was introduced by Hannay and Berry (Hannay and Berry, 1980). It turns out that it has a rich arithmetic structure, and its study uses several ingredients in modern number theory.
作者: Shuttle    時間: 2025-3-25 15:39
UNIFORM DISTRIBUTION, EXPONENTIAL SUMS, AND CRYPTOGRAPHY,istribution and, in turn, the bounding of relevant exponential sums. Several of the bounds we give have since been quantitatively sharpened, by Garaev (Garaev, 2005) and, spectacularly so, in recent work of Bourgain (Bourgain, 2004; Bourgain, 2005).
作者: 自愛    時間: 2025-3-25 17:51

作者: Creditee    時間: 2025-3-25 21:40
UNIVERSAL TORSORS OVER DEL PEZZO SURFACES AND RATIONAL POINTS,hlighting the use of universal torsors in such counting problems. To illustrate the method, we provide a proof of Manin’s conjecture for the unique split singular quartic Del Pezzo surface with a singularity of type ...
作者: 外露    時間: 2025-3-26 01:58
THE ARITHMETIC THEORY OF QUANTUM MAPS, 2006). I will then survey the problem of quantum equidistribution for this model. This model was introduced by Hannay and Berry (Hannay and Berry, 1980). It turns out that it has a rich arithmetic structure, and its study uses several ingredients in modern number theory.
作者: 羽毛長成    時間: 2025-3-26 05:43
Future Challenges and Perspective,umber of (unit) squares inside. There is obviously a little ambiguity in deciding how to count the squares which straddle the boundary. Whatever the protocol, if the boundary is more-or-less smooth then the number of squares in question is proportional to the perimeter of the body, which will be sma
作者: 爭論    時間: 2025-3-26 11:24

作者: Phenothiazines    時間: 2025-3-26 15:42
https://doi.org/10.1007/978-3-319-23537-0jective hyper-surfaces; in Ullmo’s course we study Galois orbits and Duke’s lectures deal with CM-points on the modular curve. This lecture concerns one of the earliest examples, namely torsion points on group varieties.
作者: 我要威脅    時間: 2025-3-26 18:55
Consensus Drug Design Using IT Microcosm,he opportunity of giving these lectures. The aim of this text is to describe the conjectures of Manin–Mumford, Bogomolov and André–Oort from the point of view of equidistribution. This includes a discussion of equidistribution of points with small heights of CM points and of Hecke points.We tried al
作者: 描述    時間: 2025-3-26 23:22
The World of Dimensions in Craft,hlighting the use of universal torsors in such counting problems. To illustrate the method, we provide a proof of Manin’s conjecture for the unique split singular quartic Del Pezzo surface with a singularity of type ...
作者: exceptional    時間: 2025-3-27 02:36

作者: Hippocampus    時間: 2025-3-27 06:59
https://doi.org/10.1007/978-3-319-13221-1antum chaos: the semi-classical eigenfunction behaviour for quantum systems having an ergodic classical limit. The emphasis is on explaining the conceptual and structural similarities between the ways in which this question arises in the study of arithmetic surfaces and ergodic toral automorphisms.
作者: 兵團    時間: 2025-3-27 10:21

作者: 修正案    時間: 2025-3-27 16:10

作者: infringe    時間: 2025-3-27 20:19

作者: convert    時間: 2025-3-27 22:29

作者: output    時間: 2025-3-28 05:07

作者: 縮影    時間: 2025-3-28 09:43

作者: 反復(fù)拉緊    時間: 2025-3-28 13:10
Consensus Drug Design Using IT Microcosm, of view of equidistribution. This includes a discussion of equidistribution of points with small heights of CM points and of Hecke points.We tried also to explain some questions of equidistribution of positive dimensional “special” subvarieties of a given variety.
作者: CHOKE    時間: 2025-3-28 17:23

作者: 毛細血管    時間: 2025-3-28 21:50

作者: FOLLY    時間: 2025-3-29 01:17

作者: 使激動    時間: 2025-3-29 05:51

作者: euphoria    時間: 2025-3-29 08:45

作者: micronized    時間: 2025-3-29 14:33
,MANIN–MUMFORD, ANDRé–OORT, THE EQUIDISTRIBUTION POINT OF VIEW, of view of equidistribution. This includes a discussion of equidistribution of points with small heights of CM points and of Hecke points.We tried also to explain some questions of equidistribution of positive dimensional “special” subvarieties of a given variety.
作者: 持久    時間: 2025-3-29 18:50

作者: 擦試不掉    時間: 2025-3-29 23:38

作者: 高度    時間: 2025-3-30 00:31

作者: Pedagogy    時間: 2025-3-30 04:55
UNIFORM DISTRIBUTION, EXPONENTIAL SUMS, AND CRYPTOGRAPHY,istribution and, in turn, the bounding of relevant exponential sums. Several of the bounds we give have since been quantitatively sharpened, by Garaev (Garaev, 2005) and, spectacularly so, in recent work of Bourgain (Bourgain, 2004; Bourgain, 2005).
作者: grotto    時間: 2025-3-30 10:03
TORSION POINTS ON CURVES,jective hyper-surfaces; in Ullmo’s course we study Galois orbits and Duke’s lectures deal with CM-points on the modular curve. This lecture concerns one of the earliest examples, namely torsion points on group varieties.
作者: sinoatrial-node    時間: 2025-3-30 16:15

作者: 分期付款    時間: 2025-3-30 17:26
UNIVERSAL TORSORS OVER DEL PEZZO SURFACES AND RATIONAL POINTS,hlighting the use of universal torsors in such counting problems. To illustrate the method, we provide a proof of Manin’s conjecture for the unique split singular quartic Del Pezzo surface with a singularity of type ...
作者: AGOG    時間: 2025-3-30 22:01

作者: REIGN    時間: 2025-3-31 04:21

作者: Innovative    時間: 2025-3-31 05:31
THE ARITHMETIC THEORY OF QUANTUM MAPS, 2006). I will then survey the problem of quantum equidistribution for this model. This model was introduced by Hannay and Berry (Hannay and Berry, 1980). It turns out that it has a rich arithmetic structure, and its study uses several ingredients in modern number theory.
作者: Isometric    時間: 2025-3-31 12:47
The Evolution of Receptors and Recognition in the Immune System,as the conventional ability to replicate organic pattern. Enzyme action of all sorts and all the processes necessary for constructing and maintaining any form of living structure are necessarily based on mutual recognition of chemical configurations. One can hardly doubt that it was the special and
作者: CERE    時間: 2025-3-31 16:53





歡迎光臨 派博傳思國際中心 (http://www.pjsxioz.cn/) Powered by Discuz! X3.5
嘉兴市| 东山县| 建宁县| 突泉县| 西峡县| 疏勒县| 平湖市| 会昌县| 稻城县| 乌拉特后旗| 林周县| 宿迁市| 崇义县| 璧山县| 永仁县| 吴旗县| 五家渠市| 保亭| 湟中县| 息烽县| 武胜县| 岳阳县| 杨浦区| 东光县| 峨边| 开封市| 文水县| 屯门区| 电白县| 辽源市| 门源| 江口县| 鄂尔多斯市| 金沙县| 鹿泉市| 平利县| 探索| 沅江市| 屯昌县| 迭部县| 壶关县|