派博傳思國(guó)際中心

標(biāo)題: Titlebook: Elliptic Curves, Modular Forms and Iwasawa Theory; In Honour of John H. David Loeffler,Sarah Livia Zerbes Conference proceedings 2016 Sprin [打印本頁(yè)]

作者: Malinger    時(shí)間: 2025-3-21 18:19
書目名稱Elliptic Curves, Modular Forms and Iwasawa Theory影響因子(影響力)




書目名稱Elliptic Curves, Modular Forms and Iwasawa Theory影響因子(影響力)學(xué)科排名




書目名稱Elliptic Curves, Modular Forms and Iwasawa Theory網(wǎng)絡(luò)公開度




書目名稱Elliptic Curves, Modular Forms and Iwasawa Theory網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Elliptic Curves, Modular Forms and Iwasawa Theory被引頻次




書目名稱Elliptic Curves, Modular Forms and Iwasawa Theory被引頻次學(xué)科排名




書目名稱Elliptic Curves, Modular Forms and Iwasawa Theory年度引用




書目名稱Elliptic Curves, Modular Forms and Iwasawa Theory年度引用學(xué)科排名




書目名稱Elliptic Curves, Modular Forms and Iwasawa Theory讀者反饋




書目名稱Elliptic Curves, Modular Forms and Iwasawa Theory讀者反饋學(xué)科排名





作者: REIGN    時(shí)間: 2025-3-21 23:58

作者: GIBE    時(shí)間: 2025-3-22 03:06

作者: 偏離    時(shí)間: 2025-3-22 05:49

作者: exostosis    時(shí)間: 2025-3-22 10:46

作者: Conscientious    時(shí)間: 2025-3-22 16:20
https://doi.org/10.1007/978-3-642-72302-5 étale cohomology. This connects them to Iwasawa theory and generalizes and strengthens the results for elliptic curves obtained in our former work. In particular, degeneration questions can be treated easily.
作者: Conscientious    時(shí)間: 2025-3-22 18:59
Partielle Differentialgleichungen,-torsion points on .. We determine all cases when the Galois cohomology group . does not vanish, and investigate the analogous question for . when .. We include an application to the verification of certain cases of the Birch and Swinnerton-Dyer conjecture, and another application to the Grunwald–Wa
作者: 交響樂    時(shí)間: 2025-3-23 01:01
,Funktionen einer Ver?nderlichen, terms of the .-operator acting on the attached etale .-module .(.). In this chapter we generalize Fontaine’s result to the case of arbitrary Lubin–Tate towers . over finite extensions . of . by using the Kisin–Ren/Fontaine equivalence of categories between Galois representations and .-modules and e
作者: 繼承人    時(shí)間: 2025-3-23 03:01
https://doi.org/10.1007/978-3-662-28432-2olute Galois group of a number field for which the residual representation . comes from a modular form then so does .. This theorem has numerous hypotheses; a crucial one is that the image of?. must be “big,” a technical condition on subgroups of .. In this paper we investigate this condition in com
作者: arthroscopy    時(shí)間: 2025-3-23 08:54
Metrische und Topologische Fragen,algebra and the “big” Hecke algebra. We prove a control theorem of the ordinary part of the .-MW groups under mild assumptions. We have proven a similar control theorem for the dual completed inductive limit in [.].
作者: 下邊深陷    時(shí)間: 2025-3-23 13:01
https://doi.org/10.1007/978-3-642-72302-5 étale cohomology. This connects them to Iwasawa theory and generalizes and strengthens the results for elliptic curves obtained in our former work. In particular, degeneration questions can be treated easily.
作者: CT-angiography    時(shí)間: 2025-3-23 17:32

作者: Incise    時(shí)間: 2025-3-23 18:36
,Control of ,-adic Mordell–Weil Groups,algebra and the “big” Hecke algebra. We prove a control theorem of the ordinary part of the .-MW groups under mild assumptions. We have proven a similar control theorem for the dual completed inductive limit in [.].
作者: 哺乳動(dòng)物    時(shí)間: 2025-3-24 01:03

作者: 優(yōu)雅    時(shí)間: 2025-3-24 05:03

作者: vascular    時(shí)間: 2025-3-24 08:46
https://doi.org/10.1007/978-3-8348-9730-5We prove the .-part of the Birch and Swinnerton-Dyer conjecture for elliptic curves of analytic rank one for most ordinary primes.
作者: 中和    時(shí)間: 2025-3-24 11:25

作者: 試驗(yàn)    時(shí)間: 2025-3-24 15:01

作者: 領(lǐng)導(dǎo)權(quán)    時(shí)間: 2025-3-24 20:12
Vektorr?ume und lineare AbbildungenWe present the results of our search for the orders of Tate–Shafarevich groups for the quadratic twists of ..
作者: HUSH    時(shí)間: 2025-3-25 01:09
https://doi.org/10.1007/978-3-662-65526-9Our objective in this paper is to prove a rather broad generalization of some classical theorems in Iwasawa theory.
作者: 粘土    時(shí)間: 2025-3-25 06:34

作者: 粗野    時(shí)間: 2025-3-25 09:03

作者: 逢迎白雪    時(shí)間: 2025-3-25 15:37
,,-adic Measures for Hermitian Modular Forms and the Rankin–Selberg Method,In this work we construct .-adic measures associated to an ordinary Hermitian modular form using the Rankin–Selberg method.
作者: Crayon    時(shí)間: 2025-3-25 17:11

作者: 不確定    時(shí)間: 2025-3-25 22:17
,Behaviour of the Order of Tate–Shafarevich Groups for the Quadratic Twists of ,,We present the results of our search for the orders of Tate–Shafarevich groups for the quadratic twists of ..
作者: minimal    時(shí)間: 2025-3-26 02:48

作者: BRIBE    時(shí)間: 2025-3-26 07:47
Diophantine Geometry and Non-abelian Reciprocity Laws I,We use non-abelian fundamental groups to define a sequence of higher reciprocity maps on the adelic points of a variety over a number field satisfying certain conditions in Galois cohomology. The non-abelian reciprocity law then states that the global points are contained in the kernel of all the reciprocity maps.
作者: 同步信息    時(shí)間: 2025-3-26 10:58

作者: isotope    時(shí)間: 2025-3-26 16:20

作者: diabetes    時(shí)間: 2025-3-26 17:11

作者: Yag-Capsulotomy    時(shí)間: 2025-3-26 21:52

作者: 考博    時(shí)間: 2025-3-27 01:16
https://doi.org/10.1007/978-3-319-45032-211R23, 11F11, 11F67; Iwasawa Theory; Elliptic Curves; Modular Forms; Number Theory; John Coates
作者: Climate    時(shí)間: 2025-3-27 06:18
2194-1009 his 70th birthday, this collection of contributions covers a range of topics in number theory, concentrating on the arithmetic of elliptic curves, modular forms, and Galois representations. Several of the contributions in this volume were presented at the conference .Elliptic Curves, Modular Forms
作者: LIMIT    時(shí)間: 2025-3-27 13:00
Compactifications of S-arithmetic Quotients for the Projective General Linear Group, the polyhedral compactification of . of Gérardin and Landvogt) for . archimedean (resp., non-archimedean). We also consider a variant of . in which we use the standard Satake compactification of . (resp., the compactification of . due to Werner).
作者: 痛苦一生    時(shí)間: 2025-3-27 17:16

作者: Complement    時(shí)間: 2025-3-27 19:17
Conference proceedings 201670.th .?birthday of John Coates in Cambridge, March 25-27, 2015. The main unifying theme is Iwasawa theory, a field that John Coates himself has done much to create. . .This collection is indispensable reading for researchers in Iwasawa theory, and is interesting and valuable for those in many related fields.?.
作者: nutrients    時(shí)間: 2025-3-27 22:18

作者: 繁榮中國(guó)    時(shí)間: 2025-3-28 03:14

作者: NOT    時(shí)間: 2025-3-28 09:43

作者: 銀版照相    時(shí)間: 2025-3-28 13:07
https://doi.org/10.1007/978-3-662-65528-3 the polyhedral compactification of . of Gérardin and Landvogt) for . archimedean (resp., non-archimedean). We also consider a variant of . in which we use the standard Satake compactification of . (resp., the compactification of . due to Werner).
作者: landmark    時(shí)間: 2025-3-28 18:00
https://doi.org/10.1007/978-3-662-28432-2patible systems. Our main result is that in a sufficiently irreducible compatible system the residual images are big at a density one set of primes. This result should make some of the work of Clozel, Harris and Taylor easier to apply in the setting of compatible systems.
作者: 寬宏大量    時(shí)間: 2025-3-28 20:31

作者: hypnotic    時(shí)間: 2025-3-29 01:31
Compactifications of S-arithmetic Quotients for the Projective General Linear Group,metric space (resp., Bruhat-Tits building) associated to . if . is archimedean (resp., non-archimedean). In this paper, we construct compactifications . of the quotient spaces . for .-arithmetic subgroups . of .. The constructions make delicate use of the maximal Satake compactification of . (resp.,
作者: 惡意    時(shí)間: 2025-3-29 05:47
,Control of ,-adic Mordell–Weil Groups,algebra and the “big” Hecke algebra. We prove a control theorem of the ordinary part of the .-MW groups under mild assumptions. We have proven a similar control theorem for the dual completed inductive limit in [.].
作者: 歡樂東方    時(shí)間: 2025-3-29 09:07
Some Congruences for Non-CM Elliptic Curves,ents of Iwasawa algebras of abelian sub-quotients of . due to the work of Ritter-Weiss and Kato (generalised by the author). In the former one needs to work with all abelian subquotients of . whereas in Kato’s approach one can work with a certain well-chosen sub-class of abelian sub-quotients of ..
作者: lambaste    時(shí)間: 2025-3-29 13:52
,On ,-adic Interpolation of Motivic Eisenstein?Classes, étale cohomology. This connects them to Iwasawa theory and generalizes and strengthens the results for elliptic curves obtained in our former work. In particular, degeneration questions can be treated easily.
作者: Permanent    時(shí)間: 2025-3-29 18:21

作者: 懸掛    時(shí)間: 2025-3-29 23:02
,Coates–Wiles Homomorphisms and Iwasawa Cohomology for Lubin–Tate Extensions, terms of the .-operator acting on the attached etale .-module .(.). In this chapter we generalize Fontaine’s result to the case of arbitrary Lubin–Tate towers . over finite extensions . of . by using the Kisin–Ren/Fontaine equivalence of categories between Galois representations and .-modules and e
作者: Tonometry    時(shí)間: 2025-3-30 01:36





歡迎光臨 派博傳思國(guó)際中心 (http://www.pjsxioz.cn/) Powered by Discuz! X3.5
抚远县| 定安县| 易门县| 襄垣县| 平南县| 东光县| 安远县| 浦北县| 五河县| 綦江县| 安徽省| 宝山区| 万荣县| 柳州市| 东至县| 广宗县| 石屏县| 永顺县| 温州市| 仁布县| 年辖:市辖区| 溧阳市| 黔江区| 通州区| 固始县| 霍林郭勒市| 商南县| 东丰县| 冷水江市| 甘肃省| 水城县| 若羌县| 林甸县| 新建县| 新和县| 砚山县| 枣阳市| 犍为县| 湘潭县| 伊宁市| 灌阳县|