派博傳思國際中心

標(biāo)題: Titlebook: Dynamics of One-Dimensional Maps; A. N. Sharkovsky,S. F. Kolyada,V. V. Fedorenko Book 1997 Springer Science+Business Media Dordrecht 1997 [打印本頁]

作者: vein220    時(shí)間: 2025-3-21 19:02
書目名稱Dynamics of One-Dimensional Maps影響因子(影響力)




書目名稱Dynamics of One-Dimensional Maps影響因子(影響力)學(xué)科排名




書目名稱Dynamics of One-Dimensional Maps網(wǎng)絡(luò)公開度




書目名稱Dynamics of One-Dimensional Maps網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Dynamics of One-Dimensional Maps被引頻次




書目名稱Dynamics of One-Dimensional Maps被引頻次學(xué)科排名




書目名稱Dynamics of One-Dimensional Maps年度引用




書目名稱Dynamics of One-Dimensional Maps年度引用學(xué)科排名




書目名稱Dynamics of One-Dimensional Maps讀者反饋




書目名稱Dynamics of One-Dimensional Maps讀者反饋學(xué)科排名





作者: audiologist    時(shí)間: 2025-3-21 20:41

作者: commensurate    時(shí)間: 2025-3-22 01:23
Mathematics and Its Applicationshttp://image.papertrans.cn/e/image/284146.jpg
作者: 揉雜    時(shí)間: 2025-3-22 05:47
https://doi.org/10.1007/978-94-015-8897-3DEX; Invariant; Volume; behavior; boundary element method; dynamical systems; eXist; nonlinear dynamics; onl
作者: 花費(fèi)    時(shí)間: 2025-3-22 08:52
978-90-481-4846-2Springer Science+Business Media Dordrecht 1997
作者: PET-scan    時(shí)間: 2025-3-22 16:04
Fundamental Concepts of the Theory of Dynamical Systems. Typical Examples and Some Results, or metric). If . belongs to ? or ?., then a dynamical system is sometimes called a flow and if . belongs to ? or ?., then this dynamical system is called a cascade. These names are connected with the fact that, under the action of .., the points of . “begin to move” ..., and the space “splits” into the trajectories of this motion.
作者: PET-scan    時(shí)間: 2025-3-22 17:49

作者: 鞠躬    時(shí)間: 2025-3-23 00:09

作者: 悲觀    時(shí)間: 2025-3-23 02:48
Pamela J. Stewart,Andrew J. Strathernive location of points of a single trajectory on the interval . may contain much information about the dynamical system as a whole. Clearly, this is explained by the fact that the phase space (the interval .) is onedimensional. The points of a trajectory define a decomposition of the phase space, an
作者: 潛移默化    時(shí)間: 2025-3-23 07:09
d . if the interiors of .. are mutually disjoint and .(..) ? .. for all . ∈{0, 1, ..., .- 1}. Denote by .., = ..(.) the set of cycles of intervals of period . of the map . which contain the critical point .. Suppose that, for some .≥ 1, the set ..(.) is not empty (it is clear that .. is not empty be
作者: Adornment    時(shí)間: 2025-3-23 10:40

作者: 繼承人    時(shí)間: 2025-3-23 17:47

作者: ADAGE    時(shí)間: 2025-3-23 19:21

作者: kidney    時(shí)間: 2025-3-23 23:23
The phase space of dynamical systems under consideration, i.e., the interval ., is endowed with Lebesgue measure. It is thus useful to establish some properties of dynamical systems that are typical with respect to this measure, i.e., properties exhibited by trajectories covering sets of full measure.
作者: mastopexy    時(shí)間: 2025-3-24 05:45
Let . be a continuous map and let . = {β., β., ..., β.} be its cycle of period .≥1. One can distinguish between two types of stability of the cycle ., namely, between stability under perturbations of the initial data and stability under perturbations of the map. First, we consider the first type of stability.
作者: rheumatism    時(shí)間: 2025-3-24 08:57
Elements of Symbolic Dynamics,Symbolic dynamics is a part of the general theory of dynamical systems dealing with cascades generated by shifts in various spaces of sequences . where θ. are letters of an alphabet . = {θ., θ., ..., θ.} The methods of symbolic dynamics are now widely applied to the investigation of various types of dynamical systems.
作者: 暖昧關(guān)系    時(shí)間: 2025-3-24 14:22

作者: 四目在模仿    時(shí)間: 2025-3-24 18:17

作者: Occupation    時(shí)間: 2025-3-24 20:41
Local Stability of Invariant Sets. Structural Stability of Unimodal Maps,Let . be a continuous map and let . = {β., β., ..., β.} be its cycle of period .≥1. One can distinguish between two types of stability of the cycle ., namely, between stability under perturbations of the initial data and stability under perturbations of the map. First, we consider the first type of stability.
作者: resistant    時(shí)間: 2025-3-24 23:34

作者: 值得贊賞    時(shí)間: 2025-3-25 07:20

作者: Monolithic    時(shí)間: 2025-3-25 09:29
Coexistence of Periodic Trajectories,xplained by the fact that the phase space (the interval .) is onedimensional. The points of a trajectory define a decomposition of the phase space, and information on the mutual location of these points often enables one to apply the methods of symbolic dynamics. These ideas are especially useful for the investigation of periodic trajectories.
作者: dictator    時(shí)間: 2025-3-25 14:46
cause .(.) ? .). The set .. contains an element maximal by inclusion. Indeed, let .. = { .., .., ..., ..} and ... = { .., .., ..., ..} be cycles of intervals from ... We say that .. is bounded from above by the cycle of intervals .. if .. ? .. for all . ∈ { 0, 1, ..., .-1}.
作者: 輕快走過    時(shí)間: 2025-3-25 17:54

作者: Mendicant    時(shí)間: 2025-3-25 22:40
Topological Dynamics of Unimodal Maps,cause .(.) ? .). The set .. contains an element maximal by inclusion. Indeed, let .. = { .., .., ..., ..} and ... = { .., .., ..., ..} be cycles of intervals from ... We say that .. is bounded from above by the cycle of intervals .. if .. ? .. for all . ∈ { 0, 1, ..., .-1}.
作者: 遺產(chǎn)    時(shí)間: 2025-3-26 03:40

作者: Promotion    時(shí)間: 2025-3-26 07:29
Book 1997arious topological aspects of the dynamics of unimodal maps are studied in Chap- ter 5. We analyze the distinctive features of the limiting behavior of trajectories of smooth maps. In particular, for some elasses of smooth maps, we establish theorems on the number of sinks and study the problem of e
作者: SIT    時(shí)間: 2025-3-26 10:28

作者: Communicate    時(shí)間: 2025-3-26 13:34

作者: 隱藏    時(shí)間: 2025-3-26 16:52

作者: Regurgitation    時(shí)間: 2025-3-27 01:02

作者: engender    時(shí)間: 2025-3-27 02:52

作者: Keratin    時(shí)間: 2025-3-27 07:00
,Robert Browning (1812–89),he did not doubt that ‘they will speak more intelligibly to each other than, not withstanding their abilities, they have yet done to the Public’. (., notorious for its complex and often obscure language, had been published six years earlier.)
作者: Felicitous    時(shí)間: 2025-3-27 11:28
N. H. Allen,M. Slapak,H. A. Lee The data suggest that the concentration of dividend value at a single point in time helps to create common expectations, and thus significantly reduce the incidence of bubbles. Also, the results underscore the difficulty facing econometric tests on field data where fundamental value has to be approximated.
作者: Radiation    時(shí)間: 2025-3-27 16:37
Concentration Indices for Dialogue Dominance Phenomena in TV Series: The Case of the Big Bang Theory highly correlated with a decline in popularity. A stronger concentration is present for episodes (i.e. by analysing concentration of episodes rather than speaking lines), where the number of characters that dominate episodes is quite small.
作者: champaign    時(shí)間: 2025-3-27 21:39

作者: 不持續(xù)就爆    時(shí)間: 2025-3-28 01:30
Klaus Barth,Hans-Joachim Theisdekretierend erscheinenden Vorwegnahme. Ihre Nachvollziehbarkeit gew?hrleistet indessen die in Abschnitt III durchgeführte Untersuchung und kritische Würdigung des erforschten Materials. Wird m?glicherweise die Geduld des Lesers allzu beansprucht, sei an seine Duldsamkeit appelliert, die Lernschritt
作者: Keratin    時(shí)間: 2025-3-28 05:04

作者: Eulogy    時(shí)間: 2025-3-28 07:26

作者: armistice    時(shí)間: 2025-3-28 11:16

作者: 過時(shí)    時(shí)間: 2025-3-28 16:25
https://doi.org/10.1007/978-3-322-99011-2Albert Einstein; Energie; Entwicklung; Genom; Kernenergie; Physik; Relativit?t; Relativit?tstheorie; Rüben




歡迎光臨 派博傳思國際中心 (http://www.pjsxioz.cn/) Powered by Discuz! X3.5
平阴县| 应城市| 仪征市| 巴林左旗| 葫芦岛市| 邹平县| 个旧市| 红河县| 安仁县| 石棉县| 麻阳| 海安县| 大埔区| 门头沟区| 大名县| 贞丰县| 会东县| 永顺县| 赣榆县| 荃湾区| 玉山县| 沙河市| 南平市| 栖霞市| 南木林县| 宁南县| 新竹县| 江西省| 拜泉县| 阳城县| 沭阳县| 玛纳斯县| 准格尔旗| 许昌县| 铁岭县| 江陵县| 汉源县| 宁乡县| 桐庐县| 江川县| 西藏|