派博傳思國(guó)際中心

標(biāo)題: Titlebook: Dynamics Reported; Expositions in Dynam Christopher K. R. T. Jones,Urs Kirchgraber,Hans-Ot Book 1996 Springer-Verlar Berlin Heidelberg 1996 [打印本頁(yè)]

作者: frustrate    時(shí)間: 2025-3-21 16:45
書(shū)目名稱(chēng)Dynamics Reported影響因子(影響力)




書(shū)目名稱(chēng)Dynamics Reported影響因子(影響力)學(xué)科排名




書(shū)目名稱(chēng)Dynamics Reported網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱(chēng)Dynamics Reported網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱(chēng)Dynamics Reported被引頻次




書(shū)目名稱(chēng)Dynamics Reported被引頻次學(xué)科排名




書(shū)目名稱(chēng)Dynamics Reported年度引用




書(shū)目名稱(chēng)Dynamics Reported年度引用學(xué)科排名




書(shū)目名稱(chēng)Dynamics Reported讀者反饋




書(shū)目名稱(chēng)Dynamics Reported讀者反饋學(xué)科排名





作者: 耐寒    時(shí)間: 2025-3-21 23:40

作者: 獸群    時(shí)間: 2025-3-22 00:37
https://doi.org/10.1007/978-1-4612-1019-1stable manifolds. This is an exponential dichotomy result because the hypotheses guarantee that orbits diverge either in the forward direction or in the backward direction. In applications the maps represent a given dynamical system, or dynamical systems in a neighbor hood of a given dynamical system, in local coordinates.
作者: 粗魯?shù)娜?nbsp;   時(shí)間: 2025-3-22 07:18

作者: 凈禮    時(shí)間: 2025-3-22 12:34
Hyperbolicity and Exponential Dichotomy for Dynamical Systems,stable manifolds. This is an exponential dichotomy result because the hypotheses guarantee that orbits diverge either in the forward direction or in the backward direction. In applications the maps represent a given dynamical system, or dynamical systems in a neighbor hood of a given dynamical system, in local coordinates.
作者: ANNUL    時(shí)間: 2025-3-22 13:33

作者: ANNUL    時(shí)間: 2025-3-22 18:34
https://doi.org/10.1007/978-3-642-79931-0Eigenvalue; bifurcation; boundary value problem; chaos; diffeomorphism; dynamical system; dynamical system
作者: negligence    時(shí)間: 2025-3-22 22:40

作者: ICLE    時(shí)間: 2025-3-23 02:01
https://doi.org/10.1007/978-1-4612-1019-1ichotomy. Our main lemma asserts that there are local stable manifolds and local unstable manifolds associated with a sequence of maps which are close to hyperbolic linear maps, and that certain local stable manifolds and local unstable manifolds have unique points of intersection. Our main lemma al
作者: BYRE    時(shí)間: 2025-3-23 05:53
https://doi.org/10.1007/978-3-642-77517-8e fact that they have served as models for the evolution of systems arising in physics, chemistry, biology and various other disciplines. However, the traditional topics in the theory of differential equations do not encompass many important problems which fall into the realm of what is today known
作者: 橡子    時(shí)間: 2025-3-23 13:05
Adversary of the Queen’s Adversariesear the homoclinic orbit is determined asymptotically by a reduced system on the center manifold. The method is applied to cases where the center manifold is one- or two-dimensional. When the center manifold is one-dimensional, we can obtain all the solutions near the homoclinic orbit. When a Hopf b
作者: 磨坊    時(shí)間: 2025-3-23 15:08
https://doi.org/10.1057/9780230389083Schr?dinger equation, a perturbation which contains damping and driving terms. Specifically, we study, both analytically and numerically, homoclinic and chaotic behavior in a two mode ode truncation. First, we summarize recent results of numerical experiments which establish the presence of irregula
作者: Affirm    時(shí)間: 2025-3-23 20:05

作者: 燈絲    時(shí)間: 2025-3-24 01:23
Dynamics Reported978-3-642-79931-0Series ISSN 0936-6040 Series E-ISSN 2942-8548
作者: Filibuster    時(shí)間: 2025-3-24 04:55

作者: 博愛(ài)家    時(shí)間: 2025-3-24 07:19
Feedback Stabilizability of Time-Periodic Parabolic Equations,e fact that they have served as models for the evolution of systems arising in physics, chemistry, biology and various other disciplines. However, the traditional topics in the theory of differential equations do not encompass many important problems which fall into the realm of what is today known
作者: 粗俗人    時(shí)間: 2025-3-24 14:40

作者: 相一致    時(shí)間: 2025-3-24 16:28
Homoclinic Orbits in a Four Dimensional Model of a Perturbed NLS Equation: A Geometric Singular PerSchr?dinger equation, a perturbation which contains damping and driving terms. Specifically, we study, both analytically and numerically, homoclinic and chaotic behavior in a two mode ode truncation. First, we summarize recent results of numerical experiments which establish the presence of irregula
作者: 絕食    時(shí)間: 2025-3-24 19:29

作者: exigent    時(shí)間: 2025-3-25 00:55

作者: colostrum    時(shí)間: 2025-3-25 06:29

作者: 小說(shuō)    時(shí)間: 2025-3-25 10:50
0936-6040 elp to gain the utmost degree of clarity. It is hoped, that DYNAMICS REPORTED will be useful for those entering the field and will stimulate an exchange of idea978-3-642-79933-4978-3-642-79931-0Series ISSN 0936-6040 Series E-ISSN 2942-8548
作者: 說(shuō)不出    時(shí)間: 2025-3-25 13:01

作者: 混合    時(shí)間: 2025-3-25 17:18

作者: 主動(dòng)脈    時(shí)間: 2025-3-25 20:08
Feedback Stabilizability of Time-Periodic Parabolic Equations,tem is autonomous (cf. [7], [40]). For the time-periodic infinite dimensional case some first steps have been made by A. Lunardi (cf. [33]). But before we embark on a description of our results we give an example as motivation for the kind of problems in control theory we shall be concerned with.
作者: NATAL    時(shí)間: 2025-3-26 01:41
Homoclinic Orbits in a Four Dimensional Model of a Perturbed NLS Equation: A Geometric Singular Perric singular perturbation theory. Next these homoclinic orbits are constructed, and studied, numerically with a bifurcation algorithm. These numerical studies find some members of the family of homoclinic orbits which were predicted by the theory. Finally, the existence of a chaotic symbol dynamics
作者: 排斥    時(shí)間: 2025-3-26 06:53
8樓
作者: SKIFF    時(shí)間: 2025-3-26 12:27
8樓
作者: 母豬    時(shí)間: 2025-3-26 15:16
8樓
作者: ZEST    時(shí)間: 2025-3-26 16:48
9樓
作者: 宇宙你    時(shí)間: 2025-3-26 23:06
9樓
作者: 虛假    時(shí)間: 2025-3-27 03:28
9樓
作者: APNEA    時(shí)間: 2025-3-27 08:51
9樓
作者: blackout    時(shí)間: 2025-3-27 09:33
10樓
作者: 一小塊    時(shí)間: 2025-3-27 14:26
10樓
作者: Gustatory    時(shí)間: 2025-3-27 18:16
10樓
作者: 紋章    時(shí)間: 2025-3-28 00:26
10樓




歡迎光臨 派博傳思國(guó)際中心 (http://www.pjsxioz.cn/) Powered by Discuz! X3.5
剑河县| 全州县| 竹山县| 大同市| 库尔勒市| 江城| 抚顺县| 鸡西市| 静安区| 广州市| 邯郸县| 抚松县| 乾安县| 喀什市| 牙克石市| 惠东县| 平江县| 博爱县| 农安县| 澄迈县| 清丰县| 宁国市| 正蓝旗| 伊吾县| 永兴县| 府谷县| 淮安市| 进贤县| 仁寿县| 陈巴尔虎旗| 开远市| 宁阳县| 桐梓县| 新宾| 江陵县| 清苑县| 扎赉特旗| 滕州市| 罗源县| 清水县| 马山县|