標(biāo)題: Titlebook: Dynamical Systems and Chaos; Proceedings of the S Luis Garrido Conference proceedings 1983 Springer-Verlag Berlin Heidelberg 1983 Chaos.Cha [打印本頁(yè)] 作者: MAXIM 時(shí)間: 2025-3-21 19:57
書目名稱Dynamical Systems and Chaos影響因子(影響力)
書目名稱Dynamical Systems and Chaos影響因子(影響力)學(xué)科排名
書目名稱Dynamical Systems and Chaos網(wǎng)絡(luò)公開度
書目名稱Dynamical Systems and Chaos網(wǎng)絡(luò)公開度學(xué)科排名
書目名稱Dynamical Systems and Chaos被引頻次
書目名稱Dynamical Systems and Chaos被引頻次學(xué)科排名
書目名稱Dynamical Systems and Chaos年度引用
書目名稱Dynamical Systems and Chaos年度引用學(xué)科排名
書目名稱Dynamical Systems and Chaos讀者反饋
書目名稱Dynamical Systems and Chaos讀者反饋學(xué)科排名
作者: OGLE 時(shí)間: 2025-3-21 21:29
https://doi.org/10.1007/978-3-662-44268-5ternal forces. The onset of diffusion has strong analogies with a phase-transition. The diffusion coefficient is the order parameter and has a universal critical exponent. The dependence on random external fluctuations is also universal and can be expressed in terms of a universal scaling function which is calculated analytically.作者: capillaries 時(shí)間: 2025-3-22 02:11
Macroscopic behavior in a simple chaotic Hamiltonian system,ich too (like the main regime) is the same for both time directions. One of the two particles hereby shows a statistical directional preference. This preference is the same as when the system is run as an open system (‘temporarily open regime’). The simple nature of the system encourages further quantitative and qualitative investigations.作者: 彎彎曲曲 時(shí)間: 2025-3-22 05:33
Self-generated diffusion and universal critical properties in chaotic systems,ternal forces. The onset of diffusion has strong analogies with a phase-transition. The diffusion coefficient is the order parameter and has a universal critical exponent. The dependence on random external fluctuations is also universal and can be expressed in terms of a universal scaling function which is calculated analytically.作者: 激怒某人 時(shí)間: 2025-3-22 09:15 作者: 過(guò)分自信 時(shí)間: 2025-3-22 14:18
Imbedding of a one-dimensional endomorphism into a two-dimensional diffeomorphism. Implications,μ, such that μ = o gives a one unit decrease of the dimension. The method of sections of Poincaré gives a generalization of T., x. = f(x., a) + y. h(x., y.), y. b g(x., y.) ., b = 0(μ.), a > o, f, g, h being functions such that this mapping T is a difformorphism .. Then Tb can be considered as a first approach to the study of T.作者: 過(guò)分自信 時(shí)間: 2025-3-22 19:37
Chaotic dynamics in Hamiltonian systems with divided phase space,作者: ironic 時(shí)間: 2025-3-23 00:09 作者: CRUMB 時(shí)間: 2025-3-23 04:12
,A universal transition from quasi-periodicity to Chaos — Abstract,作者: FACET 時(shí)間: 2025-3-23 06:04 作者: fatuity 時(shí)間: 2025-3-23 11:11
Experimental aspects of the period doubling scenario,作者: Ankylo- 時(shí)間: 2025-3-23 14:17
Strange attractors for differential delay equations,作者: 匯總 時(shí)間: 2025-3-23 20:30 作者: FLAGR 時(shí)間: 2025-3-23 22:20 作者: employor 時(shí)間: 2025-3-24 03:19
Continuous bifurcation and dissipative structures associated with a soft mode recombination instabi作者: Pessary 時(shí)間: 2025-3-24 06:43 作者: 乏味 時(shí)間: 2025-3-24 13:01
Prologue Some ideas about strange attractors,oclinic and heteroclinic points. However, many questions are left open:.We strongly recommend to look for the geometric structure in physical or numerical experiments. It seems to us that without this knowledge one cannot get a really deep insight in the problem of S.A.作者: jumble 時(shí)間: 2025-3-24 16:39 作者: 紀(jì)念 時(shí)間: 2025-3-24 20:26 作者: 背信 時(shí)間: 2025-3-25 01:54
https://doi.org/10.1007/978-3-662-44268-5iffusive motion. While the period-doubling bifurcations have the universal asymptotic bifurcation rate δ=4.6692..., the tangent bifurcations present within the chaotic region do not follow this rate. We show that the tangent bifurcations giving rise to a fine structure of periodic windows have bifur作者: DOSE 時(shí)間: 2025-3-25 06:36 作者: ICLE 時(shí)間: 2025-3-25 07:48 作者: 懶鬼才會(huì)衰弱 時(shí)間: 2025-3-25 14:54 作者: 擁擠前 時(shí)間: 2025-3-25 19:26 作者: Additive 時(shí)間: 2025-3-25 22:49 作者: 昆蟲 時(shí)間: 2025-3-26 03:03
https://doi.org/10.1007/3-540-12276-1Chaos; Chaos (Math; ); Dynamical system; Dynamisches System; dynamical systems作者: lesion 時(shí)間: 2025-3-26 07:40 作者: Dysarthria 時(shí)間: 2025-3-26 09:38 作者: Medicaid 時(shí)間: 2025-3-26 13:14 作者: 偏離 時(shí)間: 2025-3-26 19:53 作者: 裝勇敢地做 時(shí)間: 2025-3-27 00:53
Imbedding of a one-dimensional endomorphism into a two-dimensional diffeomorphism. Implications,, having only one extremum, and satisfying other conditions (cf. p. 121 of .). For f = ax ± x., from the known bifurcation structure of T.., it is possible to obtain the properties of T. as for the quadratic case. Consider now the ordinary differential equations of one of the following types : eithe作者: NAUT 時(shí)間: 2025-3-27 05:09
第58192主題貼--第2樓 (沙發(fā))作者: Desert 時(shí)間: 2025-3-27 06:46
第38893主題貼--第2樓 (沙發(fā))作者: Jargon 時(shí)間: 2025-3-27 10:26
第38892主題貼--第2樓 (沙發(fā))作者: corpuscle 時(shí)間: 2025-3-27 16:35
第58191主題貼--第2樓 (沙發(fā))作者: 干旱 時(shí)間: 2025-3-27 18:07
第38891主題貼--第2樓 (沙發(fā))作者: Cirrhosis 時(shí)間: 2025-3-27 21:59
第4樓作者: 門閂 時(shí)間: 2025-3-28 05:48
第4樓作者: 飲料 時(shí)間: 2025-3-28 06:59
第4樓作者: Platelet 時(shí)間: 2025-3-28 10:35
5樓作者: 使無(wú)效 時(shí)間: 2025-3-28 17:23
5樓作者: creatine-kinase 時(shí)間: 2025-3-28 20:37
5樓作者: 概觀 時(shí)間: 2025-3-29 01:17
5樓作者: Occupation 時(shí)間: 2025-3-29 03:35
6樓作者: Exploit 時(shí)間: 2025-3-29 08:51
6樓作者: grounded 時(shí)間: 2025-3-29 14:47
6樓作者: 野蠻 時(shí)間: 2025-3-29 18:16
7樓作者: Iatrogenic 時(shí)間: 2025-3-29 20:02
7樓作者: 得罪人 時(shí)間: 2025-3-30 01:07
7樓作者: 無(wú)彈性 時(shí)間: 2025-3-30 05:04
7樓作者: Sedative 時(shí)間: 2025-3-30 09:43
8樓作者: 男學(xué)院 時(shí)間: 2025-3-30 16:00
8樓作者: 警告 時(shí)間: 2025-3-30 17:17
8樓作者: Ceramic 時(shí)間: 2025-3-30 22:33
8樓作者: Cabg318 時(shí)間: 2025-3-31 04:56
9樓作者: 暴露他抗議 時(shí)間: 2025-3-31 08:58
9樓作者: Eosinophils 時(shí)間: 2025-3-31 09:34
9樓作者: Conquest 時(shí)間: 2025-3-31 17:12
9樓作者: 連詞 時(shí)間: 2025-3-31 21:07
10樓作者: lanugo 時(shí)間: 2025-4-1 00:42
10樓作者: palliative-care 時(shí)間: 2025-4-1 04:54
10樓作者: glomeruli 時(shí)間: 2025-4-1 08:17
10樓