派博傳思國際中心

標題: Titlebook: Drinfeld Moduli Schemes and Automorphic Forms; The Theory of Ellipt Yuval Z. Flicker Book 2013 Yuval Z. Flicker 2013 Drinfield modules.Galo [打印本頁]

作者: Monsoon    時間: 2025-3-21 19:17
書目名稱Drinfeld Moduli Schemes and Automorphic Forms影響因子(影響力)




書目名稱Drinfeld Moduli Schemes and Automorphic Forms影響因子(影響力)學科排名




書目名稱Drinfeld Moduli Schemes and Automorphic Forms網(wǎng)絡公開度




書目名稱Drinfeld Moduli Schemes and Automorphic Forms網(wǎng)絡公開度學科排名




書目名稱Drinfeld Moduli Schemes and Automorphic Forms被引頻次




書目名稱Drinfeld Moduli Schemes and Automorphic Forms被引頻次學科排名




書目名稱Drinfeld Moduli Schemes and Automorphic Forms年度引用




書目名稱Drinfeld Moduli Schemes and Automorphic Forms年度引用學科排名




書目名稱Drinfeld Moduli Schemes and Automorphic Forms讀者反饋




書目名稱Drinfeld Moduli Schemes and Automorphic Forms讀者反饋學科排名





作者: 叢林    時間: 2025-3-21 23:07
Representations of a Weil Groupd Laumon (Publ Math IHES 65:131–210, 1987). We explain the result twice. A preliminary exposition in the classical language of representations of the Weil group, then in the equivalent language of smooth .-adic sheaves, used e.g. in (Deligne and Flicker, Counting local systems with principal unipote
作者: absorbed    時間: 2025-3-22 03:33
Book 2013d and developed the original work. The use of the theory of elliptic modules in the present work makes it accessible to graduate students, and it will serve as a valuable resource to facilitate an?entrance to this fascinating area of mathematics.
作者: 易發(fā)怒    時間: 2025-3-22 07:35
Axially Symmetric Non-similar Flowsd Laumon (Publ Math IHES 65:131–210, 1987). We explain the result twice. A preliminary exposition in the classical language of representations of the Weil group, then in the equivalent language of smooth .-adic sheaves, used e.g. in (Deligne and Flicker, Counting local systems with principal unipote
作者: 漫不經(jīng)心    時間: 2025-3-22 10:56

作者: 腫塊    時間: 2025-3-22 13:11
Elliptic Modules: Analytic Definition. the function field . of . over ., that is, the field of rational functions on . over .. At each place . of ., namely a closed point of ., let .. be the completion of . at . and .. the ring of integers in ... Fix a place . of .. Let .. be the completion of an algebraic closure . of ...
作者: 腫塊    時間: 2025-3-22 19:23
Elliptic Modules: Geometric Definition, that is, the scheme ., is replaced by an arbitrary scheme . over . and . is replaced by an invertible (locally free rank one) sheaf . over . (equivalently a line bundle over .). An elliptic module of rank . over . will then be defined as an .?structure on . which becomes an elliptic module of rank
作者: 消散    時間: 2025-3-22 21:29
Deligne’s Conjecture and Congruence Relationsrs and the Galois group on them. This is a rather selective summary, and not a complete exposition. For an introductory textbook to the subject see. The shorter exposition of , Arcata, Rapport, is very useful, and so are the fundamental results of SGA, Exp. XVII, XVIII, and SGA, Exp. III.
作者: ALERT    時間: 2025-3-23 02:22
Isogeny Classes comparison we need to describe the arithmetic data, which is the cardinality of the set of points on the fiber .. at . of the moduli scheme .., over finite field extensions of ., or, equivalently, the set . with the action of the Frobenius morphism on it, by group theoretic data which appears in th
作者: 絕食    時間: 2025-3-23 09:00

作者: Instrumental    時間: 2025-3-23 10:00
Purity Theorement, namely that all unramified components of such a π are tempered, namely that all of their Hecke eigenvalues have absolute value one. This is deduced from a form of the trace formula of Arthur, as well as the theory of elliptic modules developed above, Deligne’s purity of the action of the Froben
作者: 密碼    時間: 2025-3-23 14:57

作者: 表被動    時間: 2025-3-23 19:16
Representations of a Weil Group ., . = .(.), and . a fixed place of ., as in Chap. 2. This section concerns the higher reciprocity law, which parametrizes the cuspidal .-modules whose component at . is cuspidal, by irreducible continuous constructible .-dimensional .-adic (.≠.) representations of the Weil group ., or irreducible
作者: vector    時間: 2025-3-23 22:51

作者: 無聊的人    時間: 2025-3-24 06:20
Lagrangian Formulation of General Relativityule, over .. Then π is the restricted direct product . over all places . of . of irreducible admissible .. = .(..)-modules π.. For almost all . the component π. is unramified. In this case there are nonzero complex numbers ., uniquely determined up to order by π. and called the . of π., with the fol
作者: 揭穿真相    時間: 2025-3-24 06:45

作者: deciduous    時間: 2025-3-24 11:45

作者: scotoma    時間: 2025-3-24 16:43
Mark Bennister,Ben Worthy,Dan Keithrs and the Galois group on them. This is a rather selective summary, and not a complete exposition. For an introductory textbook to the subject see. The shorter exposition of , Arcata, Rapport, is very useful, and so are the fundamental results of SGA, Exp. XVII, XVIII, and SGA, Exp. III.
作者: Horizon    時間: 2025-3-24 21:58
https://doi.org/10.1007/978-3-319-53441-1 comparison we need to describe the arithmetic data, which is the cardinality of the set of points on the fiber .. at . of the moduli scheme .., over finite field extensions of ., or, equivalently, the set . with the action of the Frobenius morphism on it, by group theoretic data which appears in th
作者: 無節(jié)奏    時間: 2025-3-24 23:53

作者: 玩忽職守    時間: 2025-3-25 06:46
Evaluating Cognitive Significanceent, namely that all unramified components of such a π are tempered, namely that all of their Hecke eigenvalues have absolute value one. This is deduced from a form of the trace formula of Arthur, as well as the theory of elliptic modules developed above, Deligne’s purity of the action of the Froben
作者: 虛假    時間: 2025-3-25 07:53
Evaluating Cognitive Significance the special fiber . (of the moduli scheme ..), which is a separated scheme of finite type over .. This formula applies only to powers of the (geometric) Frobenius endomorphism .. ×1, and the conclusion of Theorem 10.8 concerns only the (Hecke) eigenvalues of the action of the Hecke algebra . of ..-
作者: adroit    時間: 2025-3-25 12:46

作者: 逢迎春日    時間: 2025-3-25 16:11

作者: 孵卵器    時間: 2025-3-25 21:22

作者: BILIO    時間: 2025-3-26 03:09

作者: 精美食品    時間: 2025-3-26 07:15

作者: 書法    時間: 2025-3-26 09:46

作者: 高爾夫    時間: 2025-3-26 14:17

作者: 構想    時間: 2025-3-26 17:56
Yuval Z. FlickerProvides a ?quick introduction to the Langlands correspondence for function fields via the cohomology of Drinfield moduli varieties.Complete exposition of the theory of elliptic modules, their moduli
作者: Default    時間: 2025-3-27 00:47

作者: eucalyptus    時間: 2025-3-27 01:47
https://doi.org/10.1007/978-1-4614-5888-3Drinfield modules; Galois representations; Ramanujan conjecture; cuspidal representations; elliptic modu
作者: 捕鯨魚叉    時間: 2025-3-27 06:07
978-1-4614-5887-6Yuval Z. Flicker 2013
作者: 狼群    時間: 2025-3-27 10:27
Rebel Victory and the Rwandan GenocideDefinition 2.5 of an elliptic module over a field extension of .. is purely algebraic. So it has a natural generalization defining elliptic modules over any field over ..
作者: Exonerate    時間: 2025-3-27 15:17

作者: 營養(yǎng)    時間: 2025-3-27 19:32

作者: Perceive    時間: 2025-3-28 01:23

作者: 箴言    時間: 2025-3-28 06:05

作者: legislate    時間: 2025-3-28 09:15
Counting PointsWe shall now describe each isogeny class in . and the action of the Frobenius on it. The group . acts transitively on the isogeny class, and our task is to find the stabilizer of an element in the class, in order to describe the isogeny class as a homogeneous space.
作者: Esophagus    時間: 2025-3-28 13:37
Elliptic Modules: Geometric Definitionlently a line bundle over .). An elliptic module of rank . over . will then be defined as an .?structure on . which becomes an elliptic module of rank . over . for any field . over . (thus .→.). For our purposes it suffices to consider only affine schemes . and elliptic modules defined by means of a trivial line bundle . alone.
作者: paltry    時間: 2025-3-28 14:55
Spherical Functions of Prop. 9.12 is elementary. It is due to Drinfeld. This chapter is independent of the rest of the book. In particular, we book with a local field . which is non-Archimedean but of any characteristic.
作者: 接合    時間: 2025-3-28 19:17

作者: 尾巴    時間: 2025-3-28 23:59

作者: 颶風    時間: 2025-3-29 04:07
Lagrangian Formulation of General Relativitylowing property: π. is the unique irreducible unramified subquotient π((..)) of the ..-module . which is normalizedly induced from the unramified character . of the upper triangular subgroup .. of ...
作者: 的是兄弟    時間: 2025-3-29 09:02

作者: 泥沼    時間: 2025-3-29 14:04

作者: 吸氣    時間: 2025-3-29 15:51
https://doi.org/10.1007/978-3-319-51608-0lently a line bundle over .). An elliptic module of rank . over . will then be defined as an .?structure on . which becomes an elliptic module of rank . over . for any field . over . (thus .→.). For our purposes it suffices to consider only affine schemes . and elliptic modules defined by means of a trivial line bundle . alone.
作者: prostate-gland    時間: 2025-3-29 20:18

作者: 合同    時間: 2025-3-30 01:09

作者: 兇猛    時間: 2025-3-30 05:04





歡迎光臨 派博傳思國際中心 (http://www.pjsxioz.cn/) Powered by Discuz! X3.5
恭城| 察隅县| 乌什县| 盖州市| 高邑县| 炉霍县| 玛曲县| 甘南县| 孝昌县| 东莞市| 平南县| 苍梧县| 高密市| 阳朔县| 昆山市| 淮南市| 昌邑市| 曲麻莱县| 芦山县| 古丈县| 鹰潭市| 怀仁县| 北碚区| 宝应县| 台南县| 博野县| 遵义县| 桐柏县| 高平市| 界首市| 贺州市| 山丹县| 怀仁县| 扎兰屯市| 自治县| 文水县| 青州市| 齐河县| 桂东县| 桐梓县| 福泉市|