標題: Titlebook: Donaldson Type Invariants for Algebraic Surfaces; Transition of Moduli Takuro Mochizuki Book 2009 Springer-Verlag Berlin Heidelberg 2009 Ex [打印本頁] 作者: 小缺點 時間: 2025-3-21 19:20
書目名稱Donaldson Type Invariants for Algebraic Surfaces影響因子(影響力)
書目名稱Donaldson Type Invariants for Algebraic Surfaces影響因子(影響力)學科排名
書目名稱Donaldson Type Invariants for Algebraic Surfaces網絡公開度
書目名稱Donaldson Type Invariants for Algebraic Surfaces網絡公開度學科排名
書目名稱Donaldson Type Invariants for Algebraic Surfaces被引頻次
書目名稱Donaldson Type Invariants for Algebraic Surfaces被引頻次學科排名
書目名稱Donaldson Type Invariants for Algebraic Surfaces年度引用
書目名稱Donaldson Type Invariants for Algebraic Surfaces年度引用學科排名
書目名稱Donaldson Type Invariants for Algebraic Surfaces讀者反饋
書目名稱Donaldson Type Invariants for Algebraic Surfaces讀者反饋學科排名
作者: 吵鬧 時間: 2025-3-21 23:29 作者: NICHE 時間: 2025-3-22 04:18 作者: 策略 時間: 2025-3-22 05:35 作者: hauteur 時間: 2025-3-22 09:21
Obstruction Theories of Moduli Stacks and Master Spaces,ace of .. In this chapter, we study obstruction theories of moduli stacks of some kinds of stable objects on . with parabolic structure along .. The naive strategy for construction was explained in Subsection 2.4.2.We will also discuss obstruction theories for master spaces..In Section 5.1, we study作者: cultivated 時間: 2025-3-22 16:11 作者: cultivated 時間: 2025-3-22 19:12 作者: Matrimony 時間: 2025-3-22 22:17
0075-8434 moduli spaces of semistable sheaves with arbitrary ranks on a polarized projective surface. We may expect the existence of interesting “universal relations among invariants”, which would be a natural generalization of the “wall-crossing formula” and the “Witten conjecture” for classical Donaldson in作者: heckle 時間: 2025-3-23 02:15
Intelligent Interfaces and UIMS, transition formulas are stated under an assumption which makes the problems much simpler. They are enough for the study of invariants in the rank 2 case, and the results are explained in Section 1.4. Generalization to the higher rank case is discussed in Section 1.5. We explain how to use master spaces for our problems in Section 1.6.作者: NORM 時間: 2025-3-23 09:36 作者: rods366 時間: 2025-3-23 13:16
Introduction,, transition formulas are stated under an assumption which makes the problems much simpler. They are enough for the study of invariants in the rank 2 case, and the results are explained in Section 1.4. Generalization to the higher rank case is discussed in Section 1.5. We explain how to use master spaces for our problems in Section 1.6.作者: radiograph 時間: 2025-3-23 16:16 作者: COMA 時間: 2025-3-23 20:38
Preliminaries,on 2.4.3. It gives obstruction theories of moduli spaces of torsion-free quotient sheaves over a smooth projective surface. The result will be used in Section 5.6. We also obtain the smoothness of moduli spaces of quotient torsion-sheaves over a smooth projective curve, although we will not use it l作者: 令人發(fā)膩 時間: 2025-3-24 00:14 作者: 禁止,切斷 時間: 2025-3-24 05:29
Geometric Invariant Theory and Enhanced Master Space,n Section 4.5, we construct an enhanced master space in the oriented case, and we give a description of the stack theoretic fixed point set with respect to the natural torus action. They are essentially just a reformulation of the results in the previous sections.We give a more convenient descriptio作者: Infinitesimal 時間: 2025-3-24 10:24
Obstruction Theories of Moduli Stacks and Master Spaces, construction of obstruction theories of master spaces. In Subsection 5.1.4, we give an obstruction theory of the open subset of a moduli stack of torsion-free sheaves determined by the condition O., by directly applying the construction in Subsection 5.1.1. As a special case, we look at an obstruct作者: engender 時間: 2025-3-24 12:11 作者: Parabola 時間: 2025-3-24 17:10 作者: 綠州 時間: 2025-3-24 21:29
Unerwartete Todesf?lle in Klinik und Praxison 2.4.3. It gives obstruction theories of moduli spaces of torsion-free quotient sheaves over a smooth projective surface. The result will be used in Section 5.6. We also obtain the smoothness of moduli spaces of quotient torsion-sheaves over a smooth projective curve, although we will not use it l作者: 多嘴多舌 時間: 2025-3-25 02:35 作者: Excitotoxin 時間: 2025-3-25 05:46 作者: Catheter 時間: 2025-3-25 08:36
Unerwartete Todesf?lle in Klinik und Praxis construction of obstruction theories of master spaces. In Subsection 5.1.4, we give an obstruction theory of the open subset of a moduli stack of torsion-free sheaves determined by the condition O., by directly applying the construction in Subsection 5.1.1. As a special case, we look at an obstruct作者: overweight 時間: 2025-3-25 11:48
https://doi.org/10.1007/978-3-642-77989-3ular, we give a detailed description of the virtual fundamental class when . are satisfied. In Subsection 6.3.3, we study the obstruction theory of parabolic Hilbert schemes. In the rest of this section, we show the splitting stated in Proposition 6.3.8..In Sections 6.4–6.6, we give some relations o作者: 憎惡 時間: 2025-3-25 19:32
Test methods for respiratory sensitizationon formulas for the case p. = dim H.(X,O.)! >0. They are formally the same as those in the simpler case..In Section 7.6, we study transition formulas for the case p. = 0. By using it, we obtain a weak wall crossing formula in Section 7.7. We write down the weak wall crossing formula and a weak inter作者: 菊花 時間: 2025-3-25 23:31
Book 2009t tentatively, provides a part of foundation for the further study on such universal relations. In the rest of this preface, we would like to explain our motivation and some of important ingredients of this study. See Introduction for our actual problems and results. Donaldson Invariants Let us brie作者: Coma704 時間: 2025-3-26 01:39 作者: 隨意 時間: 2025-3-26 05:59 作者: Delectable 時間: 2025-3-26 11:14
Lecture Notes in Mathematicshttp://image.papertrans.cn/e/image/282593.jpg作者: 引水渠 時間: 2025-3-26 14:58
https://doi.org/10.1007/978-3-540-93913-9Excel; Invariant; Natural; Obstruction theory; Semistable sheaves; Smooth function; Transition of moduli s作者: Interferons 時間: 2025-3-26 20:41
978-3-540-93912-2Springer-Verlag Berlin Heidelberg 2009作者: Palpable 時間: 2025-3-27 00:33
Intelligent Interfaces and UIMS in this monograph..In Section 1.1, we explain the problems. In Section 1.2, we discuss the main issues for construction of invariants. In Section 1.3, transition formulas are stated under an assumption which makes the problems much simpler. They are enough for the study of invariants in the rank 2 作者: 安撫 時間: 2025-3-27 03:06 作者: Offstage 時間: 2025-3-27 05:19
https://doi.org/10.1007/978-3-642-77472-0 following of this chapter, X will denote a smooth connected projective variety over an algebraically closed field . of characteristic 0. Let Pic. denote the Picard variety of X. We fix a base point . ? X, and hence we have a Poincaré bundle . on Pic. × X..In Section 3.1, we review the basic notion.作者: 尖 時間: 2025-3-27 13:02 作者: thwart 時間: 2025-3-27 16:20 作者: Morbid 時間: 2025-3-27 18:54
https://doi.org/10.1007/978-3-642-77989-3 will study their property in this chapter..In Section 6.1, we obtain virtual fundamental classes for some stacks, by showing the perfectness of the obstruction theories. We compare the virtual fundamental classes of moduli stacks of δ-stable oriented reduced L-Bradlow pairs and δ-stable .-Bradlow p作者: Fracture 時間: 2025-3-27 22:27
Test methods for respiratory sensitization..Let H.(A) and H.(A) denote the singular cohomology and homology groups of a topological space A with Q-coefficient. They are naturally Z/2Z-graded..Let X be a smooth connected complex projective surface with a base point, and let D be a smooth hypersurface of X. We denote the Picard variety of X b作者: CAB 時間: 2025-3-28 04:06
Textbook 2012ematikstudiums. Dieses Buch legt mit einer Einführung in die Lineare und Konvexe Optimierung eine solide Basis für komplexere Themen der Diskreten und Nichtlinearen Optimierung. Bei Studierenden werden nur Grundkenntnisse der Linearen Algebra und Analysis vorausgesetzt, wie sie im ersten Studienjahr