派博傳思國際中心

標(biāo)題: Titlebook: Distributed Machine Learning and Gradient Optimization; Jiawei Jiang,Bin Cui,Ce Zhang Book 2022 The Editor(s) (if applicable) and The Auth [打印本頁]

作者: Nutraceutical    時間: 2025-3-21 17:15
書目名稱Distributed Machine Learning and Gradient Optimization影響因子(影響力)




書目名稱Distributed Machine Learning and Gradient Optimization影響因子(影響力)學(xué)科排名




書目名稱Distributed Machine Learning and Gradient Optimization網(wǎng)絡(luò)公開度




書目名稱Distributed Machine Learning and Gradient Optimization網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Distributed Machine Learning and Gradient Optimization被引頻次




書目名稱Distributed Machine Learning and Gradient Optimization被引頻次學(xué)科排名




書目名稱Distributed Machine Learning and Gradient Optimization年度引用




書目名稱Distributed Machine Learning and Gradient Optimization年度引用學(xué)科排名




書目名稱Distributed Machine Learning and Gradient Optimization讀者反饋




書目名稱Distributed Machine Learning and Gradient Optimization讀者反饋學(xué)科排名





作者: Fibroid    時間: 2025-3-21 23:06
Basics of Distributed Machine Learning,al techniques are involved in meeting the characteristics of distributed environments. In this chapter, we first conduct an anatomy of distributed machine learning, with which we understand the indispensable building blocks in designing distributed gradient optimization algorithms. Then, we provide
作者: 繁榮地區(qū)    時間: 2025-3-22 04:21

作者: Anthem    時間: 2025-3-22 05:14

作者: 步履蹣跚    時間: 2025-3-22 09:42
Conclusion,t fit the model parameters over the training data. As the data volume becomes larger and larger, extending gradient optimization algorithms to distributed environments is indispensable. This book thereby studies gradient optimization in the setting of distributed machine learning.
作者: irreparable    時間: 2025-3-22 14:42

作者: irreparable    時間: 2025-3-22 20:42

作者: Gerontology    時間: 2025-3-22 22:23

作者: CHOIR    時間: 2025-3-23 03:00
Distributed Machine Learning Systems,t underlying infrastructures, e.g., new hardware (GPU/FPGA/RDMA), cloud environment, and databases. In this chapter, we will describe a broad range of machine learning systems in terms of motivations, architectures, functionalities, pros, and cons.
作者: 商業(yè)上    時間: 2025-3-23 07:01
Book 2022ra, large-scale datasets pose enormous challenges for the existing machine learning systems. As such, implementing machine learning algorithms in a distributed environment has become a key technology, and recent research has shown gradient-based iterative optimization to be an effective solution. Fo
作者: 宏偉    時間: 2025-3-23 09:54

作者: FRAX-tool    時間: 2025-3-23 17:36

作者: Contend    時間: 2025-3-23 20:50

作者: 人工制品    時間: 2025-3-24 01:09

作者: Relinquish    時間: 2025-3-24 02:43

作者: 控訴    時間: 2025-3-24 09:42

作者: Solace    時間: 2025-3-24 14:40
Distributed Gradient Optimization Algorithms,We classify these methods by their targeted machine learning models, including but not limited to generalized linear models, deep learning models, and tree models. For each category of machine learning model, we briefly describe their concepts and principles and then introduce the existing gradient optimization algorithms that can be adopted.
作者: 支形吊燈    時間: 2025-3-24 17:35

作者: 無辜    時間: 2025-3-24 23:03

作者: 上流社會    時間: 2025-3-25 00:40

作者: NICHE    時間: 2025-3-25 04:24
https://doi.org/10.1057/9780230253025We classify these methods by their targeted machine learning models, including but not limited to generalized linear models, deep learning models, and tree models. For each category of machine learning model, we briefly describe their concepts and principles and then introduce the existing gradient
作者: 甜食    時間: 2025-3-25 09:18

作者: 相容    時間: 2025-3-25 12:28

作者: Cultivate    時間: 2025-3-25 19:00

作者: 外露    時間: 2025-3-25 20:20
978-981-16-3422-2The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapor
作者: landmark    時間: 2025-3-26 04:07
Distributed Machine Learning and Gradient Optimization978-981-16-3420-8Series ISSN 2522-0179 Series E-ISSN 2522-0187
作者: 取之不竭    時間: 2025-3-26 08:06
https://doi.org/10.1057/9780230253025We classify these methods by their targeted machine learning models, including but not limited to generalized linear models, deep learning models, and tree models. For each category of machine learning model, we briefly describe their concepts and principles and then introduce the existing gradient optimization algorithms that can be adopted.
作者: 背帶    時間: 2025-3-26 10:26

作者: 合法    時間: 2025-3-26 14:52
Jiawei Jiang,Bin Cui,Ce ZhangPresents a comprehensive overview of distributed machine learning.Introduces the progress of gradient optimization for distributed machine learning.Addresses the key challenge of implementing machine
作者: subordinate    時間: 2025-3-26 17:35
Big Data Managementhttp://image.papertrans.cn/e/image/281918.jpg
作者: concise    時間: 2025-3-27 00:28
9樓
作者: Restenosis    時間: 2025-3-27 04:23
9樓
作者: Ordeal    時間: 2025-3-27 05:50
10樓
作者: 橫截,橫斷    時間: 2025-3-27 12:26
10樓
作者: Mosaic    時間: 2025-3-27 14:07
10樓
作者: 單片眼鏡    時間: 2025-3-27 19:28
10樓




歡迎光臨 派博傳思國際中心 (http://www.pjsxioz.cn/) Powered by Discuz! X3.5
苏尼特左旗| 平江县| 五原县| 玉龙| 滕州市| 安阳县| 高平市| 镇远县| 韶山市| 兴海县| 宁晋县| 吉林市| 林周县| 故城县| 尖扎县| 秭归县| 始兴县| 奉节县| 竹山县| 寻甸| 三穗县| 洞头县| 富锦市| 曲阜市| 黄大仙区| 邓州市| 双峰县| 新丰县| 鹰潭市| 巧家县| 隆尧县| 靖宇县| 陆丰市| 香河县| 浮梁县| 宽甸| 滨海县| 双江| 临清市| 潞西市| 疏附县|