派博傳思國際中心

標(biāo)題: Titlebook: Diophantine Approximation on Linear Algebraic Groups; Transcendence Proper Michel Waldschmidt Book 2000 Springer-Verlag Berlin Heidelberg 2 [打印本頁]

作者: hierarchy    時(shí)間: 2025-3-21 16:42
書目名稱Diophantine Approximation on Linear Algebraic Groups影響因子(影響力)




書目名稱Diophantine Approximation on Linear Algebraic Groups影響因子(影響力)學(xué)科排名




書目名稱Diophantine Approximation on Linear Algebraic Groups網(wǎng)絡(luò)公開度




書目名稱Diophantine Approximation on Linear Algebraic Groups網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Diophantine Approximation on Linear Algebraic Groups被引頻次




書目名稱Diophantine Approximation on Linear Algebraic Groups被引頻次學(xué)科排名




書目名稱Diophantine Approximation on Linear Algebraic Groups年度引用




書目名稱Diophantine Approximation on Linear Algebraic Groups年度引用學(xué)科排名




書目名稱Diophantine Approximation on Linear Algebraic Groups讀者反饋




書目名稱Diophantine Approximation on Linear Algebraic Groups讀者反饋學(xué)科排名





作者: Canvas    時(shí)間: 2025-3-21 22:20
Book 2000tive version of which is also included. It yields new results of simultaneous approximation and of algebraic independence. 2 chapters written by D. Roy provide complete and at the same time simplified proofs of zero estimates (due to P. Philippon) onlinear algebraic groups.
作者: 冬眠    時(shí)間: 2025-3-22 03:03
0072-7830 c independence. 2 chapters written by D. Roy provide complete and at the same time simplified proofs of zero estimates (due to P. Philippon) onlinear algebraic groups.978-3-642-08608-3978-3-662-11569-5Series ISSN 0072-7830 Series E-ISSN 2196-9701
作者: 名詞    時(shí)間: 2025-3-22 07:25
Introduction and Historical Surveyas well as in the nonhomogeneous version. We also describe the six exponentials Theorem, we present the state of the art on the problem of algebraic independence of logarithms of algebraic numbers. We conclude with a few comments on the Linear Subgroup Theorem.
作者: Proponent    時(shí)間: 2025-3-22 12:37

作者: ciliary-body    時(shí)間: 2025-3-22 15:04
Heights of Algebraic Numberslle’s inequality (§ 3.5) is an extension of these estimates and provides a lower bound for the absolute value of any nonzero algebraic number. More specifically, if we are given finitely many (fixed) algebraic numbers ..,...,.., and a polynomial . ∈ ?[X.,...,X.] which does not vanish at the point (.
作者: ciliary-body    時(shí)間: 2025-3-22 20:39
Zero Estimate, by Damien Royng is prescribed. This result takes into account the multidegrees of the obstruction subgroup and improves in this way the earlier zero estimates of D. W. Masser [Ma 1981b] and D. W. Masser and G. Wüstholz [MaWü 19811 A refinement will be given in Chap. 8 when multiplicities are introduced.
作者: LAPSE    時(shí)間: 2025-3-23 00:04

作者: Flinch    時(shí)間: 2025-3-23 03:46
Multiplicity Estimate by Damien Royally due to P. Philippon (see [P 1986a]) and again we restrict to commutative linear algebraic groups. This allows us to be more concrete and brings simplifications in the proof of the result. For an outline of the zero estimate of P. Philippon on a general commutative algebraic group, the reader ma
作者: 使人煩燥    時(shí)間: 2025-3-23 05:59
On Baker’s Methodles. In Chapters 6 and 7, we extended Schneider’s method in several variables in order to prove the homogeneous transcendence result (Theorem 1.5) as well as quantitative refinements. The proofs did not involve any derivative at all. In Chap. 9, a single derivative was introduced, so that a second p
作者: Melanocytes    時(shí)間: 2025-3-23 10:16

作者: 阻止    時(shí)間: 2025-3-23 16:36

作者: Flawless    時(shí)間: 2025-3-23 20:57

作者: 隱語    時(shí)間: 2025-3-24 00:23
Algebraic Independencere algebraic numbers . such that |.|is small but not zero. One deduces that numbers ..,..., .. belonging to a field of transcendence degree 1 admit good simultaneous approximations by algebraic numbers ..,..., .., where the quality of the approximation, namely the number max.... |.. ? ..|, is controlled in terms of the degree [?(..,..., ..): ?].
作者: Pericarditis    時(shí)間: 2025-3-24 06:22
0072-7830 k deals with values of the usual exponential function e^z. A central open problem is the conjecture on algebraic independence of logarithms of algebraic numbers. This book includes proofs of the main basic results (theorems of Hermite-Lindemann, Gelfond-Schneider, 6 exponentials theorem), an introdu
作者: compel    時(shí)間: 2025-3-24 09:57

作者: 審問    時(shí)間: 2025-3-24 14:15

作者: tenuous    時(shí)間: 2025-3-24 15:57

作者: 宣誓書    時(shí)間: 2025-3-24 19:25
https://doi.org/10.1007/978-3-319-14738-3.,...,..) then we can estimate from below |.(..,...,..)|. The lower bound will depend upon the degrees of . with respect to each of the X.’s, the absolute values of its coefficients as well as some measure of the ..’s.
作者: micturition    時(shí)間: 2025-3-24 23:55

作者: saphenous-vein    時(shí)間: 2025-3-25 05:04
M. Jansen,M. Judas,J. Saborowskire algebraic numbers . such that |.|is small but not zero. One deduces that numbers ..,..., .. belonging to a field of transcendence degree 1 admit good simultaneous approximations by algebraic numbers ..,..., .., where the quality of the approximation, namely the number max.... |.. ? ..|, is controlled in terms of the degree [?(..,..., ..): ?].
作者: nocturnal    時(shí)間: 2025-3-25 09:53

作者: Stress    時(shí)間: 2025-3-25 12:20

作者: PSA-velocity    時(shí)間: 2025-3-25 16:51
https://doi.org/10.1007/978-3-662-11569-5Algebra; Diophantine approximation; Exponential Functions; Linear Algebraic groups; Measures of Independ
作者: inquisitive    時(shí)間: 2025-3-25 19:59

作者: 使聲音降低    時(shí)間: 2025-3-26 03:44
Michel WaldschmidtIncludes supplementary material:
作者: Chronological    時(shí)間: 2025-3-26 04:17
Grundlehren der mathematischen Wissenschaftenhttp://image.papertrans.cn/e/image/280537.jpg
作者: FLAT    時(shí)間: 2025-3-26 09:50
Design Principles for Micro Modelsas well as in the nonhomogeneous version. We also describe the six exponentials Theorem, we present the state of the art on the problem of algebraic independence of logarithms of algebraic numbers. We conclude with a few comments on the Linear Subgroup Theorem.
作者: 澄清    時(shí)間: 2025-3-26 14:44
Robert Tanton,Kimberley L. Edwardsle. Our aim is to prove the theorems of Hermite-Lindemann and Gel’ fond-Schneider by means of the alternants or interpolation determinants of M. Laurent [Lau 1989]. The real case of these two theorems (§§ 2.3 and 2.4) is easier, thanks to an estimate, due to G. Pólya (Lemma 2.2), for the number of r
作者: gusher    時(shí)間: 2025-3-26 19:56

作者: EXALT    時(shí)間: 2025-3-26 21:07

作者: lacrimal-gland    時(shí)間: 2025-3-27 02:45
Gil Viry,Stéphanie Vincent-Geslinwe give a second proof of the same theorem, using an extension of Schneider’s method. The two main tools are an upper bound for the absolute value of an alternant in several variables (Proposition 6.6) and the zero estimate (namely Theorem 5.1).
作者: GRUEL    時(shí)間: 2025-3-27 09:06

作者: 傻    時(shí)間: 2025-3-27 11:01

作者: apropos    時(shí)間: 2025-3-27 15:33

作者: 我吃花盤旋    時(shí)間: 2025-3-27 18:17
Introduction and Historical Surveyas well as in the nonhomogeneous version. We also describe the six exponentials Theorem, we present the state of the art on the problem of algebraic independence of logarithms of algebraic numbers. We conclude with a few comments on the Linear Subgroup Theorem.
作者: STING    時(shí)間: 2025-3-27 23:50
Zero Estimate, by Damien Royng is prescribed. This result takes into account the multidegrees of the obstruction subgroup and improves in this way the earlier zero estimates of D. W. Masser [Ma 1981b] and D. W. Masser and G. Wüstholz [MaWü 19811 A refinement will be given in Chap. 8 when multiplicities are introduced.
作者: plasma-cells    時(shí)間: 2025-3-28 03:27
Linear Independence of Logarithms of Algebraic Numberswe give a second proof of the same theorem, using an extension of Schneider’s method. The two main tools are an upper bound for the absolute value of an alternant in several variables (Proposition 6.6) and the zero estimate (namely Theorem 5.1).
作者: Glossy    時(shí)間: 2025-3-28 07:52

作者: 我不重要    時(shí)間: 2025-3-28 14:30
Design Principles for Micro Modelsas well as in the nonhomogeneous version. We also describe the six exponentials Theorem, we present the state of the art on the problem of algebraic independence of logarithms of algebraic numbers. We conclude with a few comments on the Linear Subgroup Theorem.
作者: 蠟燭    時(shí)間: 2025-3-28 16:50
https://doi.org/10.1007/978-3-319-14738-3ng is prescribed. This result takes into account the multidegrees of the obstruction subgroup and improves in this way the earlier zero estimates of D. W. Masser [Ma 1981b] and D. W. Masser and G. Wüstholz [MaWü 19811 A refinement will be given in Chap. 8 when multiplicities are introduced.
作者: 分貝    時(shí)間: 2025-3-28 21:40

作者: 谷物    時(shí)間: 2025-3-29 01:57
https://doi.org/10.1007/978-3-319-14738-3Baker’s Theorem 1.6 was proved in 1966. In 1980, D. Bertrand and D. W. Masser realized that it was a consequence of a result which was known earlier, namely . [BertMa 1980], [Ma 1981a]. The main purpose of this chapter is to explain this argument (§ 4.2).
作者: 搬運(yùn)工    時(shí)間: 2025-3-29 05:32

作者: 收集    時(shí)間: 2025-3-29 07:49
Rachna Jain,Dipanjali Majumdar,Rita MondalThe purpose of this chapter is twofold. On one hand we prove Baker’s nonhomogeneous Theorem 1.6. This is the second proof (§ 9.1) of the transcendence result, after the proof given in Chap. 4. Another proof (akin to Baker’s own argument) will be given in Chap. 10.
作者: biopsy    時(shí)間: 2025-3-29 12:36

作者: 半身雕像    時(shí)間: 2025-3-29 18:56
Saleh Abdullahi,Biswajeet PradhanHermite-Lindemann’s Theorem, Gel’fond-Schneider’s Theorem and the four expo-nentials Conjecture which have been stated in Chap. 1 can be phrased in terms of rank of 2 × 2 matrices, respectively
作者: Subdue    時(shí)間: 2025-3-29 21:08

作者: 馬賽克    時(shí)間: 2025-3-30 02:15

作者: NEXUS    時(shí)間: 2025-3-30 04:31

作者: URN    時(shí)間: 2025-3-30 09:29

作者: 平常    時(shí)間: 2025-3-30 12:35

作者: Impugn    時(shí)間: 2025-3-30 20:05

作者: 孤僻    時(shí)間: 2025-3-31 00:25
Lower Bounds for the Rank of MatricesHermite-Lindemann’s Theorem, Gel’fond-Schneider’s Theorem and the four expo-nentials Conjecture which have been stated in Chap. 1 can be phrased in terms of rank of 2 × 2 matrices, respectively
作者: 文件夾    時(shí)間: 2025-3-31 00:53

作者: 羅盤    時(shí)間: 2025-3-31 07:05

作者: 憎惡    時(shí)間: 2025-3-31 11:22
9樓
作者: 一再遛    時(shí)間: 2025-3-31 14:23
10樓
作者: 宣傳    時(shí)間: 2025-3-31 20:37
10樓
作者: Ige326    時(shí)間: 2025-3-31 21:57
10樓
作者: 破譯    時(shí)間: 2025-4-1 03:16
10樓




歡迎光臨 派博傳思國際中心 (http://www.pjsxioz.cn/) Powered by Discuz! X3.5
常山县| 调兵山市| 曲麻莱县| 巢湖市| 郯城县| 九江市| 安岳县| 兰考县| 左权县| 岐山县| 霍城县| 额敏县| 四会市| 麻阳| 武冈市| 沙田区| 潜江市| 马龙县| 沁水县| 栾川县| 清新县| 吴川市| 田东县| 广元市| 普兰县| 出国| 嵊州市| 海林市| 巨野县| 枣阳市| 沂水县| 乡宁县| 济南市| 颍上县| 金溪县| 高平市| 富川| 青浦区| 乾安县| 博客| 施秉县|