派博傳思國際中心

標(biāo)題: Titlebook: Diophantine Approximation; Festschrift for Wolf Hans Peter Schlickewei,Klaus Schmidt,Robert F. Tic Conference proceedings 2008 Springer-Ver [打印本頁]

作者: probiotic    時(shí)間: 2025-3-21 16:44
書目名稱Diophantine Approximation影響因子(影響力)




書目名稱Diophantine Approximation影響因子(影響力)學(xué)科排名




書目名稱Diophantine Approximation網(wǎng)絡(luò)公開度




書目名稱Diophantine Approximation網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Diophantine Approximation被引頻次




書目名稱Diophantine Approximation被引頻次學(xué)科排名




書目名稱Diophantine Approximation年度引用




書目名稱Diophantine Approximation年度引用學(xué)科排名




書目名稱Diophantine Approximation讀者反饋




書目名稱Diophantine Approximation讀者反饋學(xué)科排名





作者: Flat-Feet    時(shí)間: 2025-3-21 20:56

作者: 是剝皮    時(shí)間: 2025-3-22 04:08
Hans Peter Schlickewei,Klaus Schmidt,Robert F. TicCurrent information on important branches of diophantine approximation from leading experts in the field.Diverse methods are presented.The influence of diophantine approximation in other fields, e.g.
作者: 放肆的我    時(shí)間: 2025-3-22 07:40
Developments in Mathematicshttp://image.papertrans.cn/e/image/280530.jpg
作者: 缺陷    時(shí)間: 2025-3-22 10:04
Introduction: Urban Developmentied since 1957, beginning with Danicic [.]. Given an integer . ≥ 2. we seek a number . having the following property, for every ∈ > 0 and every pair α = (α., ... α.), β = (β.,..., β.) in ?.: . > C., 1 ≤ . ≤ .
作者: 蹣跚    時(shí)間: 2025-3-22 13:03
Introduction: Urban Developmentsearch paper containing proofs for new results (Sections 5–8). I use many different sources; to make the reader’s life easier, I decided to keep the paper (more-or-less) self-contained - this explains the considerable length.
作者: 蹣跚    時(shí)間: 2025-3-22 17:11

作者: 財(cái)主    時(shí)間: 2025-3-23 00:31
Adil Mohammed Khan,Ishrat Islam L.-discrepancy . where for every . = (y.,..., . .) ∈ . ., the local discrepancy . is given by . Here . is a rectangular box of volume vol . y1... . ., and #(.) denotes the number of points of a set ., counted with multiplicity.
作者: MIR    時(shí)間: 2025-3-23 05:08
Introduction: Regional Resources 1970, as an evolution of slightly special cases related to an analogue of Roth’s Theorem for simultaneous rational approximations to several algebraic numbers. While Roth’s Theorem considers rational approximations to a given algebraic point on the line, the Subspace Theorem deals with approximatio
作者: 我邪惡    時(shí)間: 2025-3-23 07:12

作者: accessory    時(shí)間: 2025-3-23 12:52

作者: Isthmus    時(shí)間: 2025-3-23 14:25
Robert Fletcher,Marie-Josée Fortinform . with . . ∈ ?, where ., . . > 0 with given polynomials . . and nonzero numbers α. (thus for each . . .). is a linear recurrence sequence, see also [ST, Sec.C]). The general assumption of [SS1, p.220] is that α. is a root of unity and that . . ≠ 0 for . > 0 (. . may be zero), . 1, ..., . Furthe
作者: BIBLE    時(shí)間: 2025-3-23 20:06
Robert Fletcher,Marie-Josée Fortinr . and real number ., it is well known that the number . of points α in . having degree . over ? and satisfying . is finite. This is the one-dimensional case of Northcott’s Theorem [.] (see also [5, page 59]). The systematic study of the counting function ., and that of related functions in higher
作者: NATAL    時(shí)間: 2025-3-24 01:51
James P. LeSage,Manfred M. Fischerffisamment rigide pour que beaucoup des invariants s’explicitent en termes combinatoires, et en même temps suffisamment riche pour permettre de tester et illustrer diverses conjectures et théories abstraites. Elle trouve application dans de nombreuses branches des mathématiques : géométrie algébriqu
作者: Saline    時(shí)間: 2025-3-24 04:43
A Typology of Spatial Econometric Modelsal reference is Chapter I of [10]). If ξ is irrational, then, by letting . tend to infinity, this provides infinitely many rational numbers ../x. with |ξ - x./x...... By contrast, an irrational real number ξ is said to be . if there exists a constant c. > 0 suchthat |ξ - ..... for each .. or,equival
作者: 清唱?jiǎng)?nbsp;   時(shí)間: 2025-3-24 10:09

作者: eustachian-tube    時(shí)間: 2025-3-24 12:41

作者: 容易懂得    時(shí)間: 2025-3-24 18:30

作者: Monotonous    時(shí)間: 2025-3-24 19:09
Helene Schuberth,Gert D. WehingerLet . denote an algebraically closed field of characteristic 0, and let A.,..., A., G.,..., ... ∈ K[.] and . be a sequence of polynomials defined by the . th order linear recurring relation . Furthermore, let P(.) ∈ K[.], deg . ≥ 1. Recently, we investigated the question, what can be said about the number of solutions of the Diophantine equation
作者: GLOOM    時(shí)間: 2025-3-25 02:20
Manfred M. Fischer (Director),Peter NijkampConsidérons la série . qui converge pour tout complexe |q|. 1 et tout entier . 1. La notation ζ. est justifiée par le fait que cette fonction est un .-analogue de la fonction zêta de Riemann ζ . au sens suivant (voir [5, paragraphe 4.1], [3, Theorem 2] ou [.]),
作者: 流出    時(shí)間: 2025-3-25 03:55
Robert Fletcher,Marie-Josée FortinThe diagonal case of the Nagell-Ljunggren equation is . and . an odd prime. The only known nontrivial solution is . and it is conjectured to be also the only such solution. However, it is not even proved that (1) has only finitely many solution.
作者: parallelism    時(shí)間: 2025-3-25 08:00

作者: concise    時(shí)間: 2025-3-25 13:40
Spatial Econometric Interaction ModellingUne inégalité de ?ojasiewicz minore la valeur |f(.)| d’une fonction analytique . : ?.. ? par une puissance de la distance de . à l’ensemble des zéros de . Nous nous intéressons ici au cas arithmétique où . est un polyn?me à coefficients entiers.
作者: Graves’-disease    時(shí)間: 2025-3-25 18:45

作者: Deceit    時(shí)間: 2025-3-25 21:09
Metric Discrepancy Results for Sequences {nkx} and Diophantine Equations,Let (. .) be an increasing sequence of positive integers. For 0 ≤ . ≤ 1, set
作者: NEG    時(shí)間: 2025-3-26 03:20

作者: nitric-oxide    時(shí)間: 2025-3-26 07:01
On the Diophantine Equation ,,, = ,,, with , (,)=0,Let . denote an algebraically closed field of characteristic 0, and let A.,..., A., G.,..., ... ∈ K[.] and . be a sequence of polynomials defined by the . th order linear recurring relation . Furthermore, let P(.) ∈ K[.], deg . ≥ 1. Recently, we investigated the question, what can be said about the number of solutions of the Diophantine equation
作者: Fibrinogen    時(shí)間: 2025-3-26 11:00
,Approximants de Padé des ,-Polylogarithmes,Considérons la série . qui converge pour tout complexe |q|. 1 et tout entier . 1. La notation ζ. est justifiée par le fait que cette fonction est un .-analogue de la fonction zêta de Riemann ζ . au sens suivant (voir [5, paragraphe 4.1], [3, Theorem 2] ou [.]),
作者: GILD    時(shí)間: 2025-3-26 14:59
Class Number Conditions for the Diagonal Case of the Equation of Nagell and Ljunggren,The diagonal case of the Nagell-Ljunggren equation is . and . an odd prime. The only known nontrivial solution is . and it is conjectured to be also the only such solution. However, it is not even proved that (1) has only finitely many solution.
作者: 無辜    時(shí)間: 2025-3-26 16:48
Construction of Approximations to Zeta-Values,Polylogarithmic functions are defined by series . Due to equalities L.;(1) = ζ. 2, they play an important role in study of arithmetic properties of Riemann zeta-function ζ. at integer points.
作者: Cholesterol    時(shí)間: 2025-3-26 21:20

作者: stressors    時(shí)間: 2025-3-27 02:36
Diophantine Approximation978-3-211-74280-8Series ISSN 1389-2177 Series E-ISSN 2197-795X
作者: essential-fats    時(shí)間: 2025-3-27 06:08

作者: doxazosin    時(shí)間: 2025-3-27 11:07
Introduction: Urban Developmentsearch paper containing proofs for new results (Sections 5–8). I use many different sources; to make the reader’s life easier, I decided to keep the paper (more-or-less) self-contained - this explains the considerable length.
作者: Hot-Flash    時(shí)間: 2025-3-27 15:34
Adil Mohammed Khan,Ishrat Islam L.-discrepancy . where for every . = (y.,..., . .) ∈ . ., the local discrepancy . is given by . Here . is a rectangular box of volume vol . y1... . ., and #(.) denotes the number of points of a set ., counted with multiplicity.
作者: legitimate    時(shí)間: 2025-3-27 19:09

作者: 他姓手中拿著    時(shí)間: 2025-3-28 01:55
Spatial Dynamics of European Integratione. We may replace every standard .-nomial by any of its constant multiples, and the theorems would still be valid. We call . ., ..., . .) the exponent .-tuple of . Note that if . is a standard .-nomial, but not a standard (.-1)-nomial, then its exponent .-tuple is uniquely determined. Let
作者: Visual-Field    時(shí)間: 2025-3-28 03:03
https://doi.org/10.1007/978-3-211-74280-8Algebra; Diophantine; Diophantine approximation; Festschrift; Number Theory; Tichy; Wolfgang Schmidt; conti
作者: Precursor    時(shí)間: 2025-3-28 07:42
978-3-211-99909-7Springer-Verlag Vienna 2008
作者: 粗鄙的人    時(shí)間: 2025-3-28 12:35

作者: 妨礙議事    時(shí)間: 2025-3-28 15:07

作者: 辯論    時(shí)間: 2025-3-28 21:00
Orthogonality and Digit Shifts in the Classical Mean Squares Problem in Irregularities of Point Dis L.-discrepancy . where for every . = (y.,..., . .) ∈ . ., the local discrepancy . is given by . Here . is a rectangular box of volume vol . y1... . ., and #(.) denotes the number of points of a set ., counted with multiplicity.
作者: 使厭惡    時(shí)間: 2025-3-29 01:17

作者: Obscure    時(shí)間: 2025-3-29 04:54

作者: 土產(chǎn)    時(shí)間: 2025-3-29 09:46
1389-2177 nfluence of diophantine approximation in other fields, e.g. This volume contains 22 research and survey papers on recent developments in the field of diophantine approximation. The first article by Hans Peter Schlickewei is devoted to the scientific work of Wolfgang Schmidt. Further contributions de
作者: 傲慢物    時(shí)間: 2025-3-29 13:01

作者: Embolic-Stroke    時(shí)間: 2025-3-29 16:44

作者: 努力趕上    時(shí)間: 2025-3-29 20:37

作者: outskirts    時(shí)間: 2025-3-30 03:33
Conference proceedings 2008chlickewei is devoted to the scientific work of Wolfgang Schmidt. Further contributions deal with the subspace theorem and its applications to diophantine equations and to the study of linear recurring sequences. The articles are either in the spirit of more classical diophantine analysis or of geom
作者: 帶來    時(shí)間: 2025-3-30 06:23

作者: Debility    時(shí)間: 2025-3-30 08:45
A Typology of Spatial Econometric Modelsmbers can also be described as those ξ ∈ ? ? for which the result of Dirichlet can be improved in the sense that there exists a constant c. < 1 such that the inequalities 1 ≤ x. ≤ . |x.ξ ... c.X. admit a solution (x., x.) ∈ ?. for each sufficiently large . (see Theorem 1 of [2]).
作者: 陳腐的人    時(shí)間: 2025-3-30 16:09

作者: 上下倒置    時(shí)間: 2025-3-30 18:40

作者: 不利    時(shí)間: 2025-3-31 00:26

作者: LURE    時(shí)間: 2025-3-31 04:08
Applications of the Subspace Theorem to Certain Diophantine Problems,c numbers. While Roth’s Theorem considers rational approximations to a given algebraic point on the line, the Subspace Theorem deals with approximations to given hyperplanes in higher dimensional space, defined over the field of algebraic numbers, by means of rational points in that space.
作者: 總    時(shí)間: 2025-3-31 06:26

作者: 洞穴    時(shí)間: 2025-3-31 11:35
Counting Algebraic Numbers with Large Height I,nal case of Northcott’s Theorem [.] (see also [5, page 59]). The systematic study of the counting function ., and that of related functions in higher dimensions, was begun by Schmidt [.]. It is relatively easy to prove the existence of a positive constant . such that . and also the existence of positive constants . and . such that
作者: 為現(xiàn)場    時(shí)間: 2025-3-31 13:45

作者: 等級(jí)的上升    時(shí)間: 2025-3-31 21:07
,Sch?ffer’s Determinant Argument,ied since 1957, beginning with Danicic [.]. Given an integer . ≥ 2. we seek a number . having the following property, for every ∈ > 0 and every pair α = (α., ... α.), β = (β.,..., β.) in ?.: . > C., 1 ≤ . ≤ .
作者: saturated-fat    時(shí)間: 2025-3-31 21:55
Arithmetic Progressions and Tic-Tac-Toe Games,search paper containing proofs for new results (Sections 5–8). I use many different sources; to make the reader’s life easier, I decided to keep the paper (more-or-less) self-contained - this explains the considerable length.
作者: 飛鏢    時(shí)間: 2025-4-1 04:02
,Mahler’s Classification of Numbers Compared with Koksma’s, II,lgebraic numbers. Following Mahler [.], for any integer . ≥ 1, we denote by w.(ξ) the supremum of the exponents . for which . has infinitely many solutions in integer polynomials P(.) of degree at most . Here, H(.) stands for the na?ve height of the polynomial P(.), that is, the maximum of the absol
作者: cleaver    時(shí)間: 2025-4-1 07:19

作者: 殘忍    時(shí)間: 2025-4-1 11:16
Applications of the Subspace Theorem to Certain Diophantine Problems, 1970, as an evolution of slightly special cases related to an analogue of Roth’s Theorem for simultaneous rational approximations to several algebraic numbers. While Roth’s Theorem considers rational approximations to a given algebraic point on the line, the Subspace Theorem deals with approximatio
作者: Gobble    時(shí)間: 2025-4-1 16:22

作者: 束以馬具    時(shí)間: 2025-4-1 22:02

作者: commute    時(shí)間: 2025-4-1 23:44

作者: 北京人起源    時(shí)間: 2025-4-2 06:13
Counting Algebraic Numbers with Large Height I,r . and real number ., it is well known that the number . of points α in . having degree . over ? and satisfying . is finite. This is the one-dimensional case of Northcott’s Theorem [.] (see also [5, page 59]). The systematic study of the counting function ., and that of related functions in higher
作者: Melodrama    時(shí)間: 2025-4-2 08:30

作者: IOTA    時(shí)間: 2025-4-2 11:34
On the Continued Fraction Expansion of a Class of Numbers,al reference is Chapter I of [10]). If ξ is irrational, then, by letting . tend to infinity, this provides infinitely many rational numbers ../x. with |ξ - x./x...... By contrast, an irrational real number ξ is said to be . if there exists a constant c. > 0 suchthat |ξ - ..... for each .. or,equival




歡迎光臨 派博傳思國際中心 (http://www.pjsxioz.cn/) Powered by Discuz! X3.5
柳州市| 巫山县| 江口县| 鄂伦春自治旗| 宜宾县| 开鲁县| 景宁| 海宁市| 麻江县| 隆子县| 宁河县| 竹山县| 梁河县| 通道| 沧州市| 浦北县| 江华| 察隅县| 嘉鱼县| 南部县| 边坝县| 五指山市| 册亨县| 济源市| 茌平县| 新建县| 嵊州市| 桦川县| 西青区| 兴海县| 大方县| 乌拉特中旗| 灌云县| 梨树县| 通渭县| 桑植县| 外汇| 龙泉市| 扎囊县| 黄龙县| 贡嘎县|