派博傳思國際中心

標題: Titlebook: Computer Vision – ECCV 2024; 18th European Confer Ale? Leonardis,Elisa Ricci,Gül Varol Conference proceedings 2025 The Editor(s) (if applic [打印本頁]

作者: hexagon    時間: 2025-3-21 17:04
書目名稱Computer Vision – ECCV 2024影響因子(影響力)




書目名稱Computer Vision – ECCV 2024影響因子(影響力)學(xué)科排名




書目名稱Computer Vision – ECCV 2024網(wǎng)絡(luò)公開度




書目名稱Computer Vision – ECCV 2024網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Computer Vision – ECCV 2024被引頻次




書目名稱Computer Vision – ECCV 2024被引頻次學(xué)科排名




書目名稱Computer Vision – ECCV 2024年度引用




書目名稱Computer Vision – ECCV 2024年度引用學(xué)科排名




書目名稱Computer Vision – ECCV 2024讀者反饋




書目名稱Computer Vision – ECCV 2024讀者反饋學(xué)科排名





作者: lactic    時間: 2025-3-21 22:06

作者: Acetabulum    時間: 2025-3-22 02:28
,CanonicalFusion: Generating Drivable 3D Human Avatars from?Multiple Images,tegrating individual reconstruction results into the canonical space. To be specific, we first predict Linear Blend Skinning (LBS) weight maps and depth maps using a shared-encoder-dual-decoder network, enabling direct canonicalization of the 3D mesh from the predicted depth maps. Here, instead of p
作者: 單片眼鏡    時間: 2025-3-22 05:00
,Camera Height Doesn’t Change: Unsupervised Training for?Metric Monocular Road-Scene Depth Estimatioust from regular training data, .., driving videos. We refer to this training framework as FUMET.?The key idea is to leverage cars found on the road as sources of?scale supervision and to incorporate them in network training robustly. FUMET detects and estimates the sizes of cars in a frame?and aggr
作者: conservative    時間: 2025-3-22 08:49

作者: fulmination    時間: 2025-3-22 16:43

作者: fulmination    時間: 2025-3-22 19:06

作者: atopic-rhinitis    時間: 2025-3-22 23:38
,GENIXER: Empowering Multimodal Large Language Model as?a?Powerful Data Generator,nerate visual instruction tuning data. This paper proposes to explore the potential of empowering MLLMs to generate data independently without relying on GPT-4. We introduce ., a comprehensive data generation pipeline consisting of four key steps: (i) instruction data collection, (ii) instruction te
作者: 生來    時間: 2025-3-23 02:59

作者: committed    時間: 2025-3-23 08:52

作者: 有角    時間: 2025-3-23 12:37
,PreLAR: World Model Pre-training with?Learnable Action Representation,he world model learning requires extensive interactions with the real environment. Therefore, several innovative approaches such as APV proposed to unsupervised pre-train the world model from large-scale videos, allowing fewer interactions to fine-tune the world model. However, these methods only pr
作者: Endemic    時間: 2025-3-23 13:59

作者: monopoly    時間: 2025-3-23 21:20

作者: BUOY    時間: 2025-3-23 22:56

作者: 性學(xué)院    時間: 2025-3-24 05:41

作者: 突襲    時間: 2025-3-24 09:39

作者: 無法解釋    時間: 2025-3-24 12:31

作者: enterprise    時間: 2025-3-24 15:05
,LaMI-DETR: Open-Vocabulary Detection with?Language Model Instruction,(VLMs), such as CLIP. However, two?main challenges emerge: (1) A deficiency in concept representation,?where the category names in CLIP’s text space lack textual and visual knowledge. (2) An overfitting tendency towards base categories,?with the open vocabulary knowledge biased towards base categori
作者: Ischemia    時間: 2025-3-24 19:10

作者: 甜食    時間: 2025-3-25 00:26
0302-9743 ce on Computer Vision, ECCV 2024, held in Milan, Italy, during September 29–October 4, 2024...The 2387 papers presented in these proceedings were carefully reviewed and selected from a total of 8585 submissions. They deal with topics such as computer vision; machine learning; deep neural networks; r
作者: eulogize    時間: 2025-3-25 04:21
Conference proceedings 2025uter Vision, ECCV 2024, held in Milan, Italy, during September 29–October 4, 2024...The 2387 papers presented in these proceedings were carefully reviewed and selected from a total of 8585 submissions. They deal with topics such as computer vision; machine learning; deep neural networks; reinforceme
作者: 小爭吵    時間: 2025-3-25 11:17
Conference proceedings 2025nt learning; object recognition; image classification; image processing; object detection; semantic segmentation; human pose estimation; 3d reconstruction; stereo vision; computational photography; neural networks; image coding; image reconstruction; motion estimation..
作者: micronutrients    時間: 2025-3-25 14:35

作者: Communal    時間: 2025-3-25 17:31

作者: interrogate    時間: 2025-3-25 21:16
Die Stellungnahme des Kranken zur Krankheit reduces the trade-off between the?two groundings. Our experiments demonstrate significant improvements from the original GLIGEN to the rewired version in the trade-off between textual grounding and spatial grounding. The project webpage is at ..
作者: Comprise    時間: 2025-3-26 04:06

作者: 開始沒有    時間: 2025-3-26 05:05
,ReGround: Improving Textual and?Spatial Grounding at?No Cost, reduces the trade-off between the?two groundings. Our experiments demonstrate significant improvements from the original GLIGEN to the rewired version in the trade-off between textual grounding and spatial grounding. The project webpage is at ..
作者: certitude    時間: 2025-3-26 08:39

作者: GRUEL    時間: 2025-3-26 14:56
https://doi.org/10.1007/978-3-662-11111-6r goal is to utilize the powerful feature extraction capability of segment anything model (SAM) and?make out-of-domain tuning to help SAM distinguish breast masses?from background. To this end, we propose a novel model called ., which inherits the model architecture of SAM but makes improvements to
作者: Statins    時間: 2025-3-26 18:55

作者: cataract    時間: 2025-3-27 00:19

作者: gait-cycle    時間: 2025-3-27 02:59

作者: 陳列    時間: 2025-3-27 09:06
Die Synthese der Krankheitsbilder,ation, which prompts the development of NIR-to-visible translation tasks. However, the performance of existing translation methods is limited by the neglected disparities between NIR and visible imaging and the lack of paired training data. To address these challenges, we propose a novel object-awar
作者: 小卒    時間: 2025-3-27 11:31
Die Stellungnahme des Kranken zur Krankheitminate redundant data for faster processing without compromising accuracy. Previous methods are often architecture-specific or necessitate re-training, restricting their applicability with frequent model updates. To solve this, we first introduce a novel property of lightweight ConvNets: their abili
作者: 滔滔不絕地說    時間: 2025-3-27 14:37
Die Stellungnahme des Kranken zur Krankheitnerate visual instruction tuning data. This paper proposes to explore the potential of empowering MLLMs to generate data independently without relying on GPT-4. We introduce ., a comprehensive data generation pipeline consisting of four key steps: (i) instruction data collection, (ii) instruction te
作者: 楓樹    時間: 2025-3-27 20:38

作者: 撤退    時間: 2025-3-28 00:35
über Sinn und Wert der Theorienteraction, and the time to contact from?the observation of egocentric video. This ability is fundamental?for wearable assistants or human-robot interaction to understand?the user’s goals, but there is still room for improvement to perform?STA in a precise and reliable way. In this work, we improve?t
作者: 過份艷麗    時間: 2025-3-28 05:12
https://doi.org/10.1007/978-3-642-52895-8he world model learning requires extensive interactions with the real environment. Therefore, several innovative approaches such as APV proposed to unsupervised pre-train the world model from large-scale videos, allowing fewer interactions to fine-tune the world model. However, these methods only pr
作者: 疼死我了    時間: 2025-3-28 10:05

作者: 表狀態(tài)    時間: 2025-3-28 13:31

作者: oxidant    時間: 2025-3-28 17:24
https://doi.org/10.1007/978-3-642-49689-9ask. Starting with images?that facilitate depth prediction due to the absence of unfavorable factors, we systematically generate new, user-defined scenes with?a comprehensive set of challenges and associated depth information. This is achieved by leveraging cutting-edge text-to-image diffusion model
作者: 懦夫    時間: 2025-3-28 22:02
https://doi.org/10.1007/978-3-642-49689-9 through various query styles. However, current retrieval tasks predominantly focus on text-query retrieval exploration, leading to limited retrieval query options and potential ambiguity or bias in user intention. In this paper,?we propose the Style-Diversified Query-Based Image Retrieval task, whi
作者: CRASS    時間: 2025-3-28 23:55
Die Stellungnahme des Kranken zur Krankheitone dominate the other? Our analysis of a pretrained image diffusion model that integrates gated self-attention into the U-Net reveals that spatial grounding often outweighs textual grounding due to?the . flow from gated self-attention to cross-attention. We demonstrate that such bias can be signifi
作者: POWER    時間: 2025-3-29 04:47

作者: Camouflage    時間: 2025-3-29 11:17

作者: 在前面    時間: 2025-3-29 11:46

作者: Receive    時間: 2025-3-29 18:35
Computer Vision – ECCV 2024978-3-031-73337-6Series ISSN 0302-9743 Series E-ISSN 1611-3349
作者: parsimony    時間: 2025-3-29 20:04

作者: 集合    時間: 2025-3-30 02:05
978-3-031-73336-9The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
作者: 推崇    時間: 2025-3-30 07:56

作者: blithe    時間: 2025-3-30 11:56
Die sinnhaften objektiven Tatbest?ndeess we?call “Weak-to-Strong Compositional Learning” (WSCL). To achieve this, we propose a new compositional contrastive learning formulation?that discovers semantics and structures in complex descriptions?from synthetic triplets. As a result, VL models trained with?our synthetic data generation exhi
作者: Congeal    時間: 2025-3-30 14:48

作者: 赦免    時間: 2025-3-30 19:05

作者: 熒光    時間: 2025-3-30 21:10
über Sinn und Wert der Theoriens datasets?show the effectiveness of FUMET, which achieves state-of-the-art accuracy. We also show that FUMET enables training on mixed datasets of different camera heights, which leads to larger-scale training and better generalization. Metric depth reconstruction is essential in any road-scene vis
作者: 引水渠    時間: 2025-3-31 01:27
https://doi.org/10.1007/978-3-662-11111-6n, visual grounding, 3D captioning, and text-3D cross-modal retrieval.?It demonstrates performance on par with or surpassing state-of-the-art (SOTA) task-specific models. We hope our benchmark and Uni3DL?model will serve as a solid step to ease future research in unified models in the realm of 3D vi
作者: 燒瓶    時間: 2025-3-31 05:39
Die Synthese der Krankheitsbilder,gned NIR-Visible Image Dataset, a large-scale dataset comprising fully matched pairs of NIR and visible images captured with a multi-sensor coaxial camera. Empirical evaluations demonstrate our method’s superiority over existing methods, producing visually compelling results on mainstream datasets.
作者: Hypopnea    時間: 2025-3-31 10:41
Die Stellungnahme des Kranken zur Krankheitghtweight ConvNets across a variety of deep learning architectures, including ViTs, ConvNets, and hybrid transformers, without any re-training. Moreover, the simple early-stage one-step patch pruning with PaPr enhances existing patch reduction methods. Through extensive testing on diverse architectu
作者: helper-T-cells    時間: 2025-3-31 15:14
Die Stellungnahme des Kranken zur KrankheitREC datasets. Through experiments and synthetic data analysis, our findings are: (1) current MLLMs can serve as robust data generators without assistance from GPT-4V; (2) MLLMs trained with task-specific datasets can surpass GPT-4V in generating complex instruction tuning data; (3) synthetic dataset
作者: 不足的東西    時間: 2025-3-31 21:18
Die Stellungnahme des Kranken zur Krankheit have not “emerged” yet in recent multimodal LLMs. Our analysis also highlights that specialist CV models could solve these problems much better, suggesting potential pathways for future improvements. We believe . will stimulate the community to help multimodal LLMs catch up with human-level visual




歡迎光臨 派博傳思國際中心 (http://www.pjsxioz.cn/) Powered by Discuz! X3.5
金山区| 略阳县| 洪江市| 玛曲县| 长岛县| 赤城县| 大埔区| 呼和浩特市| 镇平县| 洱源县| 宜君县| 丹寨县| 增城市| 芦山县| 临沂市| 巴东县| 梁山县| 乌兰浩特市| 林口县| 高邑县| 马山县| 泸溪县| 晋州市| 招远市| 天峻县| 九江市| 汉阴县| 开江县| 中阳县| 贵港市| 大同市| 鸡泽县| 齐河县| 凤山县| 增城市| 清远市| 昌都县| 霍城县| 黄骅市| 牡丹江市| 辉南县|