派博傳思國(guó)際中心

標(biāo)題: Titlebook: Computer Vision – ECCV 2024; 18th European Confer Ale? Leonardis,Elisa Ricci,Gül Varol Conference proceedings 2025 The Editor(s) (if applic [打印本頁(yè)]

作者: JADE    時(shí)間: 2025-3-21 19:14
書目名稱Computer Vision – ECCV 2024影響因子(影響力)




書目名稱Computer Vision – ECCV 2024影響因子(影響力)學(xué)科排名




書目名稱Computer Vision – ECCV 2024網(wǎng)絡(luò)公開度




書目名稱Computer Vision – ECCV 2024網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Computer Vision – ECCV 2024被引頻次




書目名稱Computer Vision – ECCV 2024被引頻次學(xué)科排名




書目名稱Computer Vision – ECCV 2024年度引用




書目名稱Computer Vision – ECCV 2024年度引用學(xué)科排名




書目名稱Computer Vision – ECCV 2024讀者反饋




書目名稱Computer Vision – ECCV 2024讀者反饋學(xué)科排名





作者: pineal-gland    時(shí)間: 2025-3-21 22:40

作者: CHASE    時(shí)間: 2025-3-22 03:14

作者: CT-angiography    時(shí)間: 2025-3-22 07:36
,SLEDGE: Synthesizing Driving Environments with?Generative Models and?Rule-Based Traffic, able to generate agent bounding boxes and lane graphs. The model’s outputs serve as an initial state for rule-based traffic simulation. The unique properties of the entities to be generated for SLEDGE, such as their connectivity and variable count per scene, render the naive application of most mod
作者: dithiolethione    時(shí)間: 2025-3-22 11:35
,AFreeCA: Annotation-Free Counting for?All,orks to count objects from specific classes (such as humans or penguins), and counting objects from diverse categories remains a challenge. The availability of robust text-to-image latent diffusion models (LDMs) raises the question of whether these models can be utilized to generate counting dataset
作者: ANTIC    時(shí)間: 2025-3-22 14:33
,Adversarially Robust Distillation by?Reducing the?Student-Teacher Variance Gap,versarially robust knowledge distillation has emerged as a principle strategy, facilitating the transfer of robustness from a large-scale teacher model to a lightweight student model. However, existing works focus solely on sample-to-sample alignment of features or predictions between the teacher an
作者: ANTIC    時(shí)間: 2025-3-22 19:50
,: Scalable Latent Neural Fields Diffusion for?Speedy 3D Generation,h 2D diffusion has achieved success, a unified 3D diffusion pipeline remains unsettled. This paper introduces a novel framework called.to address this gap and enable fast, high-quality, and generic conditional 3D generation. Our approach harnesses a 3D-aware architecture and variational autoencoder
作者: 內(nèi)部    時(shí)間: 2025-3-22 22:13
,Hierarchical Temporal Context Learning for?Camera-Based Semantic Scene Completion,stream solutions generally leverage temporal information by roughly stacking history frames to supplement the current frame, such straightforward temporal modeling inevitably diminishes valid clues and increases learning difficulty. To address this problem, we present ., a novel .ierarchical .empora
作者: Detoxification    時(shí)間: 2025-3-23 04:47
,Equi-GSPR: Equivariant SE(3) Graph Network Model for?Sparse Point Cloud Registration,on approaches have succeeded, leveraging the intrinsic symmetry of point cloud data, including rotation equivariance, has received insufficient attention. This prohibits the model from learning effectively, resulting in a requirement for more training data and increased model complexity. To address
作者: 富饒    時(shí)間: 2025-3-23 09:15

作者: 浪費(fèi)時(shí)間    時(shí)間: 2025-3-23 11:11
,PromptCCD: Learning Gaussian Mixture Prompt Pool for?Continual Category Discovery, data while mitigating the challenge of catastrophic forgetting—an open problem that persists even in conventional, fully supervised continual learning. To address this challenge, we propose PromptCCD, a simple yet effective framework that utilizes a Gaussian Mixture Model (GMM) as a prompting metho
作者: irreparable    時(shí)間: 2025-3-23 14:45

作者: floodgate    時(shí)間: 2025-3-23 21:14

作者: 鎮(zhèn)壓    時(shí)間: 2025-3-23 22:32

作者: 搬運(yùn)工    時(shí)間: 2025-3-24 05:41
,NOVUM: Neural Object Volumes for?Robust Object Classification,ects. In this work, we show that explicitly integrating 3D compositional object representations into deep networks for image classification leads to a largely enhanced generalization in out-of-distribution scenarios. In particular, we introduce a novel architecture, referred to as NOVUM, that consis
作者: harbinger    時(shí)間: 2025-3-24 06:59

作者: 山崩    時(shí)間: 2025-3-24 11:55

作者: Interferons    時(shí)間: 2025-3-24 15:53

作者: 整體    時(shí)間: 2025-3-24 20:17
,ColorMNet: A Memory-Based Deep Spatial-Temporal Feature Propagation Network for?Video Colorization,sion or recurrently propagating estimated features that will accumulate errors or cannot explore information from far-apart frames, we develop a memory-based feature propagation module that can establish reliable connections with features from far-apart frames and alleviate the influence of inaccura
作者: 鳥籠    時(shí)間: 2025-3-25 02:29

作者: 石墨    時(shí)間: 2025-3-25 04:18

作者: 閃光你我    時(shí)間: 2025-3-25 08:50

作者: MUMP    時(shí)間: 2025-3-25 12:56

作者: 暴露他抗議    時(shí)間: 2025-3-25 17:08

作者: OFF    時(shí)間: 2025-3-25 20:47

作者: Figate    時(shí)間: 2025-3-26 01:55
Allergy Prevention and Therapy,atures undergo projection into a subspace via our proposed spectral regularization, with each component controlling a distinct aspect of the generated image. Beyond providing fine-grained control over the generative model, our approach achieves state-of-the-art image generation quality on benchmark datasets, including FFHQ, CelebA-HQ, and AFHQ-V2.
作者: 無(wú)節(jié)奏    時(shí)間: 2025-3-26 04:23
Therapieplanung an virtuellen Krebspatientenule for HOI synthesis. Besides, an auto-regressive generation pipeline is also designed to obtain smooth transitions between HOI segments. Experimental results demonstrate the generalization ability to unseen object geometries and temporal compositions. Our data, codes, and models will be publicly available for research purposes.
作者: somnambulism    時(shí)間: 2025-3-26 10:26

作者: 你敢命令    時(shí)間: 2025-3-26 14:03
,: Scalable Latent Neural Fields Diffusion for?Speedy 3D Generation,eNet and FFHQ for conditional 3D generation. Moreover, it surpasses existing 3D diffusion methods in terms of inference speed, requiring no per-instance optimization. Video demos can be found on our project webpage: ..
作者: 懶惰人民    時(shí)間: 2025-3-26 17:19

作者: 傻    時(shí)間: 2025-3-27 00:25

作者: 分發(fā)    時(shí)間: 2025-3-27 04:01

作者: exclusice    時(shí)間: 2025-3-27 06:43

作者: adulterant    時(shí)間: 2025-3-27 12:02
Mary H. Perdue PhD,Derek M. McKay PhDt storage. Meanwhile, the advantage of RAW images lies in their rich physical information under variable real-world challenging lighting conditions. For computer vision tasks directly based on camera RAW data, most existing studies adopt methods of integrating image signal processor (ISP) with backe
作者: overshadow    時(shí)間: 2025-3-27 14:06

作者: Diluge    時(shí)間: 2025-3-27 18:18
Redwan Moqbel PhD, FRCPath,Paige Lacy PhDorks to count objects from specific classes (such as humans or penguins), and counting objects from diverse categories remains a challenge. The availability of robust text-to-image latent diffusion models (LDMs) raises the question of whether these models can be utilized to generate counting dataset
作者: monopoly    時(shí)間: 2025-3-28 00:21
Chronic Rhinosinusitis and Nasal Polyposisversarially robust knowledge distillation has emerged as a principle strategy, facilitating the transfer of robustness from a large-scale teacher model to a lightweight student model. However, existing works focus solely on sample-to-sample alignment of features or predictions between the teacher an
作者: CUB    時(shí)間: 2025-3-28 03:00

作者: 強(qiáng)制性    時(shí)間: 2025-3-28 09:32

作者: 蝕刻術(shù)    時(shí)間: 2025-3-28 10:34

作者: 獸群    時(shí)間: 2025-3-28 18:30
Anne Marie Morse,Sanjeev V. Kotharemulti-modal information, the challenges are posed when extended to various clinical modalities and practical modality-missing setting due to the inherent modality gaps. To tackle these, we propose an innovative Modality-.rompted He.erogeneous .raph . .mni-modal Learning (GTP-4o), which embeds the nu
作者: Dawdle    時(shí)間: 2025-3-28 21:52

作者: 落葉劑    時(shí)間: 2025-3-28 22:54

作者: Oligarchy    時(shí)間: 2025-3-29 04:49
Allergy Prevention and Therapy,aditional methods relying on supervision signals or post-processing for latent feature disentanglement, our proposed technique enables unsupervised learning using only image data through contrastive feature categorization and spectral regularization. In our framework, the discriminator constructs ge
作者: 郊外    時(shí)間: 2025-3-29 09:09

作者: 沐浴    時(shí)間: 2025-3-29 14:34

作者: Expiration    時(shí)間: 2025-3-29 15:59

作者: 配偶    時(shí)間: 2025-3-29 21:40
Therapieplanung an virtuellen Krebspatientenmans interacting with a single object while neglecting the ubiquitous manipulation of multiple objects. Thus, we propose ., a large-scale MoCap dataset of full-body human interacting with multiple objects, containing . 4D HOI sequences and . 3D HOI frames. We also annotate . with detailed textual de
作者: Project    時(shí)間: 2025-3-30 02:21
Mathematik und intelligente Materialiencapability for image reconstruction. Nevertheless, existing implicit representation approaches only focus on building continuous appearance mapping, ignoring the continuities of the semantic information across pixels. Consequently, achieving the desired reconstruction results becomes challenging whe
作者: 笨拙的你    時(shí)間: 2025-3-30 06:07

作者: PATHY    時(shí)間: 2025-3-30 09:25

作者: 誤傳    時(shí)間: 2025-3-30 13:53
https://doi.org/10.1007/978-3-031-73235-5artificial intelligence; computer networks; computer systems; computer vision; education; Human-Computer
作者: MAPLE    時(shí)間: 2025-3-30 17:49
978-3-031-73234-8The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
作者: ethnology    時(shí)間: 2025-3-30 21:24
Lecture Notes in Computer Sciencehttp://image.papertrans.cn/d/image/242308.jpg
作者: adduction    時(shí)間: 2025-3-31 01:26
,Mahalanobis Distance-Based Multi-view Optimal Transport for?Multi-view Crowd Localization,hose long-axis and short-axis directions are guided by the view ray direction. Second, the object-to-camera distance in each view is used to adjust the optimal transport cost of each location further, where the wrong predictions far away from the camera are more heavily penalized. Finally, we propos
作者: Living-Will    時(shí)間: 2025-3-31 08:14
,RAW-Adapter: Adapting Pre-trained Visual Model to?Camera RAW Images,ubsequent high-level networks. Additionally, RAW-Adapter is a general framework that could be used in various computer vision frameworks. Abundant experiments under different lighting conditions have shown our algorithm’s state-of-the-art (SOTA) performance, demonstrating its effectiveness and effic
作者: Generalize    時(shí)間: 2025-3-31 12:32

作者: 不能平靜    時(shí)間: 2025-3-31 15:13
,AFreeCA: Annotation-Free Counting for?All,y classifier-guided method for dividing an image into patches containing objects that can be reliably counted. Consequently, we can generate counting data for any type of object and count them in an unsupervised manner. Our approach outperforms unsupervised and few-shot alternatives and is not restr
作者: 連詞    時(shí)間: 2025-3-31 17:55
,Adversarially Robust Distillation by?Reducing the?Student-Teacher Variance Gap,nder an increasing perturbation radius) correlates negatively with the gap between the feature variance evaluated on testing adversarial samples and testing clean samples. Such a negative correlation exhibits a strong linear trend, suggesting that aligning the feature covariance of the student model
作者: Alienated    時(shí)間: 2025-3-31 23:42
,Hierarchical Temporal Context Learning for?Camera-Based Semantic Scene Completion,ne-grained contextual correspondence modeling. Subsequently, to dynamically compensate for incomplete observations, we adaptively refine the feature sampling locations based on initially identified locations with high affinity and their neighboring relevant regions. Our method ranks . on the Semanti
作者: 虛度    時(shí)間: 2025-4-1 04:43
,Equi-GSPR: Equivariant SE(3) Graph Network Model for?Sparse Point Cloud Registration,ure descriptors easily. Experiments conducted on the 3DMatch and KITTI datasets exhibit the compelling and robust performance of our model compared to state-of-the-art approaches, while the model complexity remains relatively low at the same time.
作者: thyroid-hormone    時(shí)間: 2025-4-1 06:12

作者: bibliophile    時(shí)間: 2025-4-1 10:20
,PromptCCD: Learning Gaussian Mixture Prompt Pool for?Continual Category Discovery,alized Category Discovery (GCD) to CCD and benchmark state-of-the-art methods on diverse public datasets. PromptCCD significantly outperforms existing methods, demonstrating its effectiveness. Project page: ..
作者: Aqueous-Humor    時(shí)間: 2025-4-1 17:20





歡迎光臨 派博傳思國(guó)際中心 (http://www.pjsxioz.cn/) Powered by Discuz! X3.5
临城县| 澜沧| 安平县| 获嘉县| 永新县| 墨竹工卡县| 上高县| 神农架林区| 泰兴市| 涪陵区| 玉树县| 桑日县| 吉木乃县| 西盟| 恩施市| 上饶县| 枣强县| 八宿县| 定安县| 方正县| 泰和县| 咸阳市| 吉首市| 盱眙县| 正安县| 泰顺县| 阿荣旗| 礼泉县| 平泉县| 丰都县| 七台河市| 彭阳县| 安多县| 临安市| 绵竹市| 朝阳区| 乌兰察布市| 雅江县| 理塘县| 十堰市| 安多县|