派博傳思國(guó)際中心

標(biāo)題: Titlebook: Concentration Analysis and Applications to PDE; ICTS Workshop, Banga Adimurthi,K. Sandeep,Cyril Tintarev Conference proceedings 2013 Spring [打印本頁]

作者: fundoplication    時(shí)間: 2025-3-21 17:58
書目名稱Concentration Analysis and Applications to PDE影響因子(影響力)




書目名稱Concentration Analysis and Applications to PDE影響因子(影響力)學(xué)科排名




書目名稱Concentration Analysis and Applications to PDE網(wǎng)絡(luò)公開度




書目名稱Concentration Analysis and Applications to PDE網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Concentration Analysis and Applications to PDE被引頻次




書目名稱Concentration Analysis and Applications to PDE被引頻次學(xué)科排名




書目名稱Concentration Analysis and Applications to PDE年度引用




書目名稱Concentration Analysis and Applications to PDE年度引用學(xué)科排名




書目名稱Concentration Analysis and Applications to PDE讀者反饋




書目名稱Concentration Analysis and Applications to PDE讀者反饋學(xué)科排名





作者: BURSA    時(shí)間: 2025-3-21 23:57
,The Ljapunov–Schmidt Reduction for Some Critical Problems,r and ..In particular, we prove existence and multiplicity of positive and sign changing solutions which blow-up or blow-down at one or more points of the domain as the parameter ? goes to zero. The main tool is the Ljapunov–Schmidt reduction method.
作者: 事先無準(zhǔn)備    時(shí)間: 2025-3-22 02:19
Concentration Analysis and Cocompactness,file decompositions are formulated in relation to a triplet (.), where . and . are Banach spaces, . ? . , and . is, typically, a set of surjective isometries on both . and .. A profile decomposition is a representation of a bounded sequence in . as a sum of elementary concentrations of the form . .,
作者: 伴隨而來    時(shí)間: 2025-3-22 05:40
,A Note on Non-radial Sign-changing Solutions for the Schr?dinger–Poisson Problem in the Semiclassicassical limit. Indeed we construct non-radial multi-peak solutions with an arbitrary large number of positive and negative peaks which are displaced in suitable symmetric configurations and which collapse to the same point as ? ? 0. The proof is based on the Lyapunov–Schmidt reduction.
作者: ICLE    時(shí)間: 2025-3-22 12:44

作者: antecedence    時(shí)間: 2025-3-22 16:31

作者: antecedence    時(shí)間: 2025-3-22 20:49

作者: 眼界    時(shí)間: 2025-3-23 00:01

作者: 內(nèi)疚    時(shí)間: 2025-3-23 03:06
https://doi.org/10.1007/0-387-31074-6We compute the best constants in some dilation invariant inequalities for the weighted ., with weights being powers of the distance from the origin.
作者: 粗糙    時(shí)間: 2025-3-23 08:46

作者: Synchronism    時(shí)間: 2025-3-23 11:33
Towards a New Shell Model FormalismWe review results concerning optimal Sobolev inequalities in Riemannian manifolds and recent existence/non existence/uniqueness results for Sobolev extremals in the hyperbolic space .. We alsodi scuss exponential integrability in ., the hyperbolic plane, and related topics.
作者: 光亮    時(shí)間: 2025-3-23 16:25
The Statesman‘s Yearbook 1998-99We prove a general finite-dimensional reduction theorem for critical equations of scalar curvature type. Solutions of these equations are constructed as a sum of peaks. The use of this theorem reduces the proof of existence of multi-peak solutions to some test-functions estimates and to the analysis of the interactions of peaks.
作者: Respond    時(shí)間: 2025-3-23 18:43

作者: 追蹤    時(shí)間: 2025-3-23 23:26
Blow-up Solutions for Linear Perturbations of the Yamabe Equation,For a smooth, compact Riemannian manifold (M,g) of dimension . we are interested in the critical equation . where . is the Laplace–Beltrami operator, S. is the scalar curvature of . and ε is a small parameter.
作者: 彎曲道理    時(shí)間: 2025-3-24 02:33

作者: thwart    時(shí)間: 2025-3-24 10:11

作者: Frisky    時(shí)間: 2025-3-24 12:17
,The Ljapunov–Schmidt Reduction for Some Critical Problems,r and ..In particular, we prove existence and multiplicity of positive and sign changing solutions which blow-up or blow-down at one or more points of the domain as the parameter ? goes to zero. The main tool is the Ljapunov–Schmidt reduction method.
作者: Cryptic    時(shí)間: 2025-3-24 16:42
,A Note on Non-radial Sign-changing Solutions for the Schr?dinger–Poisson Problem in the Semiclassicassical limit. Indeed we construct non-radial multi-peak solutions with an arbitrary large number of positive and negative peaks which are displaced in suitable symmetric configurations and which collapse to the same point as ? ? 0. The proof is based on the Lyapunov–Schmidt reduction.
作者: clarify    時(shí)間: 2025-3-24 21:51

作者: 灰姑娘    時(shí)間: 2025-3-25 00:20
Trends in Mathematicshttp://image.papertrans.cn/c/image/234851.jpg
作者: 拒絕    時(shí)間: 2025-3-25 03:24

作者: 木訥    時(shí)間: 2025-3-25 08:56
Topics in Atomic and Nuclear Collisionsr and ..In particular, we prove existence and multiplicity of positive and sign changing solutions which blow-up or blow-down at one or more points of the domain as the parameter ? goes to zero. The main tool is the Ljapunov–Schmidt reduction method.
作者: cataract    時(shí)間: 2025-3-25 14:51
https://doi.org/10.1057/9780230271319file decompositions are formulated in relation to a triplet (.), where . and . are Banach spaces, . ? . , and . is, typically, a set of surjective isometries on both . and .. A profile decomposition is a representation of a bounded sequence in . as a sum of elementary concentrations of the form . .,
作者: EVICT    時(shí)間: 2025-3-25 18:31

作者: 怒目而視    時(shí)間: 2025-3-25 21:36

作者: 和諧    時(shí)間: 2025-3-26 01:54
Conference proceedings 2013intended to approximate solutions of partial differential equations. Since the introduction of concentration compactness in the 1980s, concentration analysis today is formalized on the functional-analytic level as well as in terms of wavelets, extends to a wide range of spaces, involves much larger
作者: aggressor    時(shí)間: 2025-3-26 06:14

作者: engrossed    時(shí)間: 2025-3-26 12:08

作者: PUT    時(shí)間: 2025-3-26 13:50

作者: Neuropeptides    時(shí)間: 2025-3-26 17:40

作者: Kinetic    時(shí)間: 2025-3-26 21:39

作者: omnibus    時(shí)間: 2025-3-27 05:05

作者: hallow    時(shí)間: 2025-3-27 08:06

作者: Ardent    時(shí)間: 2025-3-27 12:15

作者: Nostalgia    時(shí)間: 2025-3-27 15:51

作者: Fecundity    時(shí)間: 2025-3-27 19:33

作者: 開玩笑    時(shí)間: 2025-3-27 22:08

作者: 鍵琴    時(shí)間: 2025-3-28 03:48
Somnath Mookherjee,Gabrielle N. Berger or agricultural development. After Clearing Control Legislation was introduced in 1978, the demand for agricultural clearing had diminished by the end of 1994..Annual streamflow ranged from 21 mm to 344 mm, depending upon annual rainfall and vegetation cover of the catchments. However, the main gau
作者: reperfusion    時(shí)間: 2025-3-28 08:45
Book 2015t presentation slides.·?????? Features pedagogy well-suited for graduate courses and workshops including problems, solutions, and PowerPoint presentations.·?????? Equips readers to perform all analyses on a spreadsheet without requiring mastery of complex and costly software.·?????? Emphasizes under
作者: 無瑕疵    時(shí)間: 2025-3-28 10:39
https://doi.org/10.1007/978-981-10-3812-9Dieser Grundsatz gilt ganz besonders und ohne jede Einschr?nkung für den Bereich der Einkaufs- und Beschaffungsorganisation, wo — wie oft unschwer festgestellt werden kann — manches Notwendige unterbleibt, weil die Zust?ndigkeit nicht festgelegt oder weil die Aufgabe nicht erkannt wurde.
作者: SLING    時(shí)間: 2025-3-28 14:46

作者: 衍生    時(shí)間: 2025-3-28 19:25





歡迎光臨 派博傳思國(guó)際中心 (http://www.pjsxioz.cn/) Powered by Discuz! X3.5
华坪县| 方山县| 泽州县| 观塘区| 绩溪县| 光泽县| 湛江市| 元朗区| 那坡县| 广州市| 章丘市| 寻乌县| 樟树市| 青阳县| 东乌| 平昌县| 潢川县| 灌南县| 巴楚县| 孝感市| 涿州市| 临沂市| 城市| 合川市| 托克托县| 察隅县| 敦化市| 城口县| 和顺县| 安仁县| 神木县| 福建省| 响水县| 合肥市| 丁青县| 乳源| 乌拉特后旗| 平安县| 伊宁县| 固原市| 滦南县|