派博傳思國際中心

標(biāo)題: Titlebook: Computer Vision -- ACCV 2012; 11th Asian Conferenc Kyoung Mu Lee,Yasuyuki Matsushita,Zhanyi Hu Conference proceedings 2013 Springer-Verlag [打印本頁]

作者: notable    時間: 2025-3-21 18:52
書目名稱Computer Vision -- ACCV 2012影響因子(影響力)




書目名稱Computer Vision -- ACCV 2012影響因子(影響力)學(xué)科排名




書目名稱Computer Vision -- ACCV 2012網(wǎng)絡(luò)公開度




書目名稱Computer Vision -- ACCV 2012網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Computer Vision -- ACCV 2012被引頻次




書目名稱Computer Vision -- ACCV 2012被引頻次學(xué)科排名




書目名稱Computer Vision -- ACCV 2012年度引用




書目名稱Computer Vision -- ACCV 2012年度引用學(xué)科排名




書目名稱Computer Vision -- ACCV 2012讀者反饋




書目名稱Computer Vision -- ACCV 2012讀者反饋學(xué)科排名





作者: 相一致    時間: 2025-3-21 22:26

作者: ovation    時間: 2025-3-22 02:04

作者: 枕墊    時間: 2025-3-22 07:53

作者: heterogeneous    時間: 2025-3-22 09:59
,The Basis of the ‘Golden Age’,n visual comparison, our method produces higher quality saliency maps which stress out the total object meanwhile suppress background clutters. Both qualitative and quantitative experiments show our approach outperforms 8 state-of-the-art methods, achieving the highest precision rate 96% (3% improve
作者: 不足的東西    時間: 2025-3-22 16:34

作者: 不足的東西    時間: 2025-3-22 18:45
The Forging of Gas Turbine Discs,es the advantages of accurately detecting objects or parts via chamfer matching and the robustness of a max-margin learning. Our results on standard benchmark datasets show that our method significantly outperforms current directional chamfer matching, thus redefining the state-of-the-art in this fi
作者: 多節(jié)    時間: 2025-3-22 22:10

作者: macabre    時間: 2025-3-23 01:51

作者: 中世紀(jì)    時間: 2025-3-23 09:01

作者: N斯巴達人    時間: 2025-3-23 11:55
Arbitrary-Shape Object Localization Using Adaptive Image Gridspartition method which takes image content into account and can be efficiently implemented by dynamic programming. The use of adaptive partition further improves the localization accuracy of our approach. Experiments on PASCAL VOC 2007 and VOC 2008 datasets demonstrate the effectiveness of our appro
作者: 罵人有污點    時間: 2025-3-23 16:20
Salient Object Detection via Color Contrast and Color Distributionn visual comparison, our method produces higher quality saliency maps which stress out the total object meanwhile suppress background clutters. Both qualitative and quantitative experiments show our approach outperforms 8 state-of-the-art methods, achieving the highest precision rate 96% (3% improve
作者: 冰雹    時間: 2025-3-23 18:55
Data Decomposition and Spatial Mixture Modeling for Part Based Modelproposed data decomposition framework. We evaluate our system on the challenging PASCAL VOC2007 and PASCAL VOC2010 datasets, demonstrating the state-of-the-art performance compared with other related methods in terms of accuracy and efficiency.
作者: objection    時間: 2025-3-24 00:59
Max-Margin Regularization for Reducing Accidentalness in Chamfer Matchinges the advantages of accurately detecting objects or parts via chamfer matching and the robustness of a max-margin learning. Our results on standard benchmark datasets show that our method significantly outperforms current directional chamfer matching, thus redefining the state-of-the-art in this fi
作者: 惡臭    時間: 2025-3-24 04:06
Coupling-and-Decoupling: A Hierarchical Model for Occlusion-Free Car Detectionearance templates for the X pairs, single X’s and latent parts of the single X’s, respectively. The part appearance templates can also be shared among different single X’s. In detection, a dynamic programming (DP) algorithm is used and as a natural consequence we decouple the two single X’s from the
作者: 指令    時間: 2025-3-24 08:09
Conference proceedings 2013CCV 2012, held in Daejeon, Korea, in November 2012. The total of 226 contributions presented in these volumes was carefully reviewed and selected from 869submissions. The papers are organized in topical sections on object detection, learning and matching; object recognition; feature, representation,
作者: 褲子    時間: 2025-3-24 13:56

作者: 儀式    時間: 2025-3-24 15:32
Takashi Inoguchi,Lien Thi Quynh Le our method on common object discovery and model learning, which needs no fine/coarse alignment in the input data; in addition, it achieves comparable results with standard two-class MIL learning algorithms but our method is learning from one-class data only.
作者: initiate    時間: 2025-3-24 20:01
Local Context Priors for Object Proposal Generationg the Caltech pedestrian and PASCAL VOC dataset show that our method achieves the detection performance of an exhaustive search approach with much less computational load. Since we model the prior distribution over the proposals locally, it generalizes well and can be successfully applied across datasets.
作者: Insubordinate    時間: 2025-3-24 23:50
One-Class Multiple Instance Learning via Robust PCA for Common Object Discovery our method on common object discovery and model learning, which needs no fine/coarse alignment in the input data; in addition, it achieves comparable results with standard two-class MIL learning algorithms but our method is learning from one-class data only.
作者: 簡潔    時間: 2025-3-25 06:01

作者: 雄辯    時間: 2025-3-25 08:42

作者: Focus-Words    時間: 2025-3-25 15:34

作者: sclera    時間: 2025-3-25 17:54

作者: Charade    時間: 2025-3-25 20:23

作者: CANON    時間: 2025-3-26 01:36
The Development of Gas Turbine Materialsrate that combining features with multiple levels of spatial locality performs better than using just a single level. Our model performs better than all previous single-feature methods when tested on the Caltech 101 and 256 object recognition datasets.
作者: 敲詐    時間: 2025-3-26 07:38

作者: 拔出    時間: 2025-3-26 08:43
Beyond Dataset Bias: Multi-task Unaligned Shared Knowledge Transferng, we also make it possible to use different features for different databases. We call the algorithm MUST, Multitask Unaligned Shared knowledge Transfer. Through extensive experiments on five public datasets, we show that MUST consistently improves the cross-datasets generalization performance.
作者: configuration    時間: 2025-3-26 15:32
Cross-Database Transfer Learning via Learnable and Discriminant Error-Correcting Output Codese lack of training data in the target domain. Our approach is evaluated on several benchmark datasets, and leads to about 40% relative improvement in accuracy when only one training sample is available.
作者: 屈尊    時間: 2025-3-26 17:08
The Pooled NBNN Kernel: Beyond Image-to-Class and Image-to-Imageo combine them in a multi kernel framework. We refer to our method as the .. This new scheme leads to significant improvement over the standard image-to-image and image-to-class baselines, with only a small increase in computational cost.
作者: 同位素    時間: 2025-3-26 23:08
Spatially Local Coding for Object Recognitionrate that combining features with multiple levels of spatial locality performs better than using just a single level. Our model performs better than all previous single-feature methods when tested on the Caltech 101 and 256 object recognition datasets.
作者: Pepsin    時間: 2025-3-27 03:31

作者: grandiose    時間: 2025-3-27 08:07
Mid-Victorian Investment in Land, use a modified similarity measure to combine the representative DOTs with weight templates. In experiments, the proposed method achieved object detection that was better or at least comparable to that of existing methods while being very fast for both training and testing.
作者: Fierce    時間: 2025-3-27 09:42

作者: 闡明    時間: 2025-3-27 15:13

作者: 使出神    時間: 2025-3-27 18:23

作者: Finasteride    時間: 2025-3-27 21:57

作者: 極為憤怒    時間: 2025-3-28 04:13

作者: COUCH    時間: 2025-3-28 10:11

作者: 門閂    時間: 2025-3-28 14:00

作者: Yag-Capsulotomy    時間: 2025-3-28 17:52

作者: 要素    時間: 2025-3-28 22:30

作者: GLOOM    時間: 2025-3-29 02:46

作者: 解決    時間: 2025-3-29 06:55
Tell Me What You Like and I’ll Tell You What You Are: Discriminating Visual Preferences on Flickr Dait is a process of interpretation which have also roots in one’s life experiences. This aspect represents nowadays a major problem for inferring automatically the quality of a picture. In this paper, instead of trying to solve this age-old problem, we consider an intriguing, orthogonal direction, ai
作者: DEAWL    時間: 2025-3-29 09:22

作者: Evacuate    時間: 2025-3-29 11:35

作者: A簡潔的    時間: 2025-3-29 19:38

作者: Bereavement    時間: 2025-3-29 20:33

作者: 四海為家的人    時間: 2025-3-30 03:48

作者: disrupt    時間: 2025-3-30 04:44
Data Decomposition and Spatial Mixture Modeling for Part Based Model . multiple features, more components or parts) have been proposed. Nevertheless, those enhanced models bring high computation cost together with the risk of over-fitting. To tackle this problem, we propose a data decomposition method for part based models which not only accelerates training and tes
作者: 教義    時間: 2025-3-30 09:45

作者: Dungeon    時間: 2025-3-30 12:35

作者: 胖人手藝好    時間: 2025-3-30 19:26

作者: Acetaldehyde    時間: 2025-3-31 00:21
The Pooled NBNN Kernel: Beyond Image-to-Class and Image-to-Imaged by performing image-to-class comparisons. Here, we show that these are just two special cases of a more general formulation, where the feature space is partitioned into subsets of different granularity. This way, a series of representations can be derived that trade-off generalization against spec
作者: PHON    時間: 2025-3-31 01:08

作者: 紅潤    時間: 2025-3-31 08:11
Spatially Local Coding for Object Recognitionures are coded across elements of a visual vocabulary, and then these codes are pooled into histograms at several spatial granularities. We introduce spatially local coding, an alternative way to include spatial information in the image model. Instead of only coding visual appearance and leaving the
作者: 矛盾    時間: 2025-3-31 11:15

作者: 要塞    時間: 2025-3-31 17:18

作者: 障礙物    時間: 2025-3-31 19:17

作者: LAIR    時間: 2025-3-31 23:15
Kyoung Mu Lee,Yasuyuki Matsushita,Zhanyi HuUp-to-date results in computer vision.Fast-track conference proceedings.State-of-the-art research
作者: accordance    時間: 2025-4-1 01:52
Lecture Notes in Computer Sciencehttp://image.papertrans.cn/c/image/234107.jpg
作者: Folklore    時間: 2025-4-1 10:03

作者: follicular-unit    時間: 2025-4-1 12:39
978-3-642-37330-5Springer-Verlag Berlin Heidelberg 2013
作者: enterprise    時間: 2025-4-1 16:40

作者: Encoding    時間: 2025-4-1 21:08
https://doi.org/10.1007/978-3-319-61884-5 detection is carried out by using the information of object images and user’s speech in an integrated way. Originality of the method is to use logistic regression for the discrimination between unknown and known objects. The accuracy of the unknown object detection was 97% in the case when there were about fifty known objects.




歡迎光臨 派博傳思國際中心 (http://www.pjsxioz.cn/) Powered by Discuz! X3.5
安西县| 清镇市| 仙桃市| 巴彦县| 桦南县| 凉城县| 大姚县| 洪泽县| 哈巴河县| 龙口市| 洞口县| 永安市| 伊金霍洛旗| 石阡县| 黄冈市| 邹城市| 锡林郭勒盟| 西藏| 米易县| 铅山县| 泾源县| 孝感市| 盈江县| 通榆县| 玉林市| 晋州市| 泰和县| 广汉市| 宁南县| 阳城县| 内黄县| 洛隆县| 水富县| 高雄市| 如东县| 法库县| 苏尼特右旗| 蛟河市| 铜鼓县| 新绛县| 曲麻莱县|