派博傳思國際中心

標(biāo)題: Titlebook: Computer Vision and Machine Learning with RGB-D Sensors; Ling Shao,Jungong Han,Zhengyou Zhang Book 2014 Springer International Publishing [打印本頁]

作者: papertrans    時間: 2025-3-21 20:09
書目名稱Computer Vision and Machine Learning with RGB-D Sensors影響因子(影響力)




書目名稱Computer Vision and Machine Learning with RGB-D Sensors影響因子(影響力)學(xué)科排名




書目名稱Computer Vision and Machine Learning with RGB-D Sensors網(wǎng)絡(luò)公開度




書目名稱Computer Vision and Machine Learning with RGB-D Sensors網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Computer Vision and Machine Learning with RGB-D Sensors被引頻次




書目名稱Computer Vision and Machine Learning with RGB-D Sensors被引頻次學(xué)科排名




書目名稱Computer Vision and Machine Learning with RGB-D Sensors年度引用




書目名稱Computer Vision and Machine Learning with RGB-D Sensors年度引用學(xué)科排名




書目名稱Computer Vision and Machine Learning with RGB-D Sensors讀者反饋




書目名稱Computer Vision and Machine Learning with RGB-D Sensors讀者反饋學(xué)科排名





作者: Arteriography    時間: 2025-3-21 23:13
Calibration Between Depth and Color Sensors for Commodity Depth Camerasation information between the color and the depth cameras. Traditional checkerboard-based calibration schemes fail to work well for the depth camera, since its corner features cannot be reliably detected in the depth image. In this chapter, we present a maximum likelihood solution for the joint dept
作者: 字謎游戲    時間: 2025-3-22 01:17

作者: semiskilled    時間: 2025-3-22 08:19
Human Performance Capture Using Multiple Handheld Kinects. The reconstructed 3D performance can be used for character animation and free-viewpoint video. While most of the available performance capture approaches rely on a 3D video studio with tens of RGB cameras, this chapter presents a method for marker-less performance capture of single or multiple hum
作者: 切碎    時間: 2025-3-22 10:30

作者: 一致性    時間: 2025-3-22 13:02
Matching of 3D Objects Based on 3D Curvesh device (RGB-D). Our processing pipeline consists of several steps. In the preprocessing step, we first detect edges in the depth image and merge them to 2D object curves which allows a back-projection to 3D space. Then, we estimate a local coordinate system for these 3D curves. In the next step, d
作者: 一致性    時間: 2025-3-22 18:19

作者: Forehead-Lift    時間: 2025-3-22 23:47

作者: 采納    時間: 2025-3-23 02:43

作者: Euthyroid    時間: 2025-3-23 09:14

作者: Infuriate    時間: 2025-3-23 10:05
Hand Parsing and Gesture Recognition with a Commodity Depth Cameraers from the lack of discriminative features to differentiate and track hand parts. In this chapter, we present a robust hand parsing scheme to obtain a high-level and discriminative representation of the hand from raw depth image. A novel distance-adaptive feature selection method is proposed to ge
作者: insightful    時間: 2025-3-23 16:34
Learning Fast Hand Pose Recognitionchitecture, the . (.), for addressing this challenge. The classifier architecture optimizes both classification speed and accuracy when a large training set is available. Speed is obtained using simple binary features and direct indexing into a set of tables, and accuracy by using a large capacity m
作者: Coronary    時間: 2025-3-23 18:59
Real-Time Hand Gesture Recognition Using RGB-D Sensor hand motion capture procedure for establishing the real gesture data set. A hand partition scheme is designed for color-based semi-automatic labeling. This method is integrated into a vision-based hand gesture recognition framework for developing desktop applications. We use the Kinect sensor to ac
作者: encomiast    時間: 2025-3-23 22:12
The Definitive Guide to Windows Installerlished to help improve calibration accuracy. Uncertainty in depth values has been taken into account systematically. The proposed algorithm is reliable and accurate, as demonstrated by extensive experimental results on simulated and real-world examples.
作者: Anthrp    時間: 2025-3-24 03:29

作者: 蕨類    時間: 2025-3-24 10:33
https://doi.org/10.1007/978-1-4302-0176-2The matching process is transformed to the problem of Maximum Weight Subgraph search. Excellent retrieval results achieved in a comprehensive setup of challenging experiments show the benefits of our method comparing to the state-of-the-art.
作者: 粉筆    時間: 2025-3-24 12:22
Technical Considerations When Using db4o with simple contour model and thus supports complex real-time interactions. The experimental evaluations and a real-world demo of hand gesture interaction demonstrate the effectiveness of this framework.
作者: Osteoarthritis    時間: 2025-3-24 15:55
Calibration Between Depth and Color Sensors for Commodity Depth Cameraslished to help improve calibration accuracy. Uncertainty in depth values has been taken into account systematically. The proposed algorithm is reliable and accurate, as demonstrated by extensive experimental results on simulated and real-world examples.
作者: UTTER    時間: 2025-3-24 21:02

作者: 飾帶    時間: 2025-3-24 23:56
Matching of 3D Objects Based on 3D CurvesThe matching process is transformed to the problem of Maximum Weight Subgraph search. Excellent retrieval results achieved in a comprehensive setup of challenging experiments show the benefits of our method comparing to the state-of-the-art.
作者: 莊嚴(yán)    時間: 2025-3-25 06:52

作者: cochlea    時間: 2025-3-25 09:13
Book 2014e static hand poses and introduces a unified framework to enforce both temporal and spatial constraints for hand parsing; proposes a new classifier architecture for real-time hand pose recognition and a novel hand segmentation and gesture recognition system.
作者: 責(zé)問    時間: 2025-3-25 15:30
Book 2014r and depth cameras, the reduction of noise on depth maps and methods for capturing human performance in 3D; reviews a selection of applications which use RGB-D information to reconstruct human figures, evaluate energy consumption and obtain accurate action classification; presents an approach for 3
作者: Essential    時間: 2025-3-25 19:45

作者: Cumulus    時間: 2025-3-25 20:07
https://doi.org/10.1007/978-1-4302-0176-2narios by a model with tracked skeleton, which may help users to know their exercise effects and even diet or reduce their weights. The final application presents a real-time system that automatically classifies the human action acquired by consumer-priced RGBD sensor.
作者: geriatrician    時間: 2025-3-26 00:37

作者: Vertebra    時間: 2025-3-26 06:31
2191-6586 ng the RGBD information.Covers a range of different techniquThis book presents an interdisciplinary selection of cutting-edge research on RGB-D based computer vision. Features: discusses the calibration of color and depth cameras, the reduction of noise on depth maps and methods for capturing human
作者: 聯(lián)合    時間: 2025-3-26 10:24

作者: tolerance    時間: 2025-3-26 15:29
Using Sparse Optical Flow for Two-Phase Gas Flow Capturing with Multiple Kinect in the Kinect to retrieve subtle scene data alterations for reconstruction. The method is employed in a multiple Kinect vision architecture to detect the interface of propane flow around occluding objects in air.
作者: 書法    時間: 2025-3-26 17:12

作者: 有組織    時間: 2025-3-27 00:24

作者: Medley    時間: 2025-3-27 04:28

作者: ANTH    時間: 2025-3-27 07:03
The Definitive Guide to TerracottaThe second-generation Microsoft Kinect uses time-of-flight technology, while the first-generation Kinect uses structured light technology. This raises the question whether one of these technologies is “better” than the other. In this chapter, readers will find an overview of 3D camera technology and the artifacts that occur in depth maps.
作者: optic-nerve    時間: 2025-3-27 09:43
3D Depth Cameras in Vision: Benefits and Limitations of the HardwareThe second-generation Microsoft Kinect uses time-of-flight technology, while the first-generation Kinect uses structured light technology. This raises the question whether one of these technologies is “better” than the other. In this chapter, readers will find an overview of 3D camera technology and the artifacts that occur in depth maps.
作者: 飛鏢    時間: 2025-3-27 15:12
Computer Vision and Machine Learning with RGB-D Sensors978-3-319-08651-4Series ISSN 2191-6586 Series E-ISSN 2191-6594
作者: Gingivitis    時間: 2025-3-27 21:26

作者: Onerous    時間: 2025-3-28 00:34

作者: perimenopause    時間: 2025-3-28 03:27

作者: Vo2-Max    時間: 2025-3-28 06:46

作者: constellation    時間: 2025-3-28 12:14

作者: 顯示    時間: 2025-3-28 18:11

作者: Rct393    時間: 2025-3-28 20:01

作者: eustachian-tube    時間: 2025-3-28 23:51

作者: rectum    時間: 2025-3-29 05:49

作者: Apoptosis    時間: 2025-3-29 10:39

作者: Handedness    時間: 2025-3-29 12:16

作者: figment    時間: 2025-3-29 17:52

作者: 新陳代謝    時間: 2025-3-29 23:12

作者: 因無茶而冷淡    時間: 2025-3-30 02:47
Ling Shao,Jungong Han,Zhengyou ZhangDescribes recent advances in RGB-D based computer vision algorithms, with an emphasis on advanced machine learning techniques for interpreting the RGBD information.Covers a range of different techniqu
作者: 橫條    時間: 2025-3-30 05:24
Advances in Computer Vision and Pattern Recognitionhttp://image.papertrans.cn/c/image/234070.jpg
作者: 權(quán)宜之計    時間: 2025-3-30 12:14

作者: 樸素    時間: 2025-3-30 15:15





歡迎光臨 派博傳思國際中心 (http://www.pjsxioz.cn/) Powered by Discuz! X3.5
固安县| 沙雅县| 开江县| 静海县| 临潭县| 南平市| 石景山区| 汤原县| 神木县| 友谊县| 长泰县| 休宁县| 长丰县| 穆棱市| 大化| 南开区| 衡东县| 南郑县| 长岭县| 城步| 岑巩县| 汤原县| 房产| 茂名市| 克什克腾旗| 五家渠市| 轮台县| 安仁县| 天津市| 大连市| 来宾市| 潞城市| 福鼎市| 莎车县| 明溪县| 敖汉旗| 常德市| 沧源| 沙坪坝区| 浙江省| 石渠县|