派博傳思國際中心

標(biāo)題: Titlebook: Computer Graphics and Geometric Modeling Using Beta-splines; Brian A. Barsky Book 1988 Springer-Verlag Berlin Heidelberg 1988 computer gra [打印本頁]

作者: BRISK    時(shí)間: 2025-3-21 17:46
書目名稱Computer Graphics and Geometric Modeling Using Beta-splines影響因子(影響力)




書目名稱Computer Graphics and Geometric Modeling Using Beta-splines影響因子(影響力)學(xué)科排名




書目名稱Computer Graphics and Geometric Modeling Using Beta-splines網(wǎng)絡(luò)公開度




書目名稱Computer Graphics and Geometric Modeling Using Beta-splines網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Computer Graphics and Geometric Modeling Using Beta-splines被引頻次




書目名稱Computer Graphics and Geometric Modeling Using Beta-splines被引頻次學(xué)科排名




書目名稱Computer Graphics and Geometric Modeling Using Beta-splines年度引用




書目名稱Computer Graphics and Geometric Modeling Using Beta-splines年度引用學(xué)科排名




書目名稱Computer Graphics and Geometric Modeling Using Beta-splines讀者反饋




書目名稱Computer Graphics and Geometric Modeling Using Beta-splines讀者反饋學(xué)科排名





作者: 裝入膠囊    時(shí)間: 2025-3-21 21:55

作者: 腐敗    時(shí)間: 2025-3-22 02:13
Curve Evaluation and Perturbation with Uniform Shape Parameters,tly evaluate a Beta-spline curve. Observe that all the coefficient functions have a constant denominator of δ. Thus, all the divisions can be performed prior to the actual computation of the Beta-spline basis functions. The following algorithm evaluates the basis functions at . + 1 given values of t
作者: 喧鬧    時(shí)間: 2025-3-22 07:55

作者: 飛鏢    時(shí)間: 2025-3-22 09:28
Curve Evaluation and Perturbation with Continuous Shape Parameters,xpression for the curve will have a denominator of δ(.). It is thus of computational interest to define corresponding sets of coefficient functions and basis functions that are scaled by a factor of δ(.). This would simplify the expressions and eliminate redundant divisions. These scaled coefficient
作者: 支柱    時(shí)間: 2025-3-22 14:12

作者: 支柱    時(shí)間: 2025-3-22 17:41
Surface Evaluation and Perturbation with Uniform Shape Parameters, involves the computation of points on the surface for many different values of the domain parameters. The determination of a point on the patch requires the evaluation of the surface formulation at an appropriate (.) value. This entails the evaluation of the four basis functions at the value of . a
作者: 技術(shù)    時(shí)間: 2025-3-22 23:44

作者: 百科全書    時(shí)間: 2025-3-23 03:03
Geometrical Interpretation of the Shape Parameters, information specified by the control vertices. These shape parameters have the property that β1 = 1 indicates continuity of the parametric first derivative vector and β1 = 1 with β2 = 0 indicates continuity of the parametric first and second derivative vectors.
作者: 全國性    時(shí)間: 2025-3-23 06:55

作者: 珊瑚    時(shí)間: 2025-3-23 09:46
The Application of Tension to a Curve,uitively “pull out” these points by increasing tension. This concept was first analytically modeled by Schweikert in [23] and an alternative development was given in [6] and generalized in [19]. A detailed derivation of the generalized form based on a variational principle is given in [1].
作者: Basilar-Artery    時(shí)間: 2025-3-23 14:32
Derivation of the Beta-spline Curve Representation,generated curve or surface, their positions completely determine its shape. The vertices for a curve are an ordered sequence and are connected in succession to form a (closed or open) . (Figure 7.1). This sequence of vertices will be denoted..
作者: AGGER    時(shí)間: 2025-3-23 19:52

作者: entail    時(shí)間: 2025-3-23 22:52
Geometrical Interpretation of the Shape Parameters, information specified by the control vertices. These shape parameters have the property that β1 = 1 indicates continuity of the parametric first derivative vector and β1 = 1 with β2 = 0 indicates continuity of the parametric first and second derivative vectors.
作者: phlegm    時(shí)間: 2025-3-24 03:48

作者: prick-test    時(shí)間: 2025-3-24 10:02

作者: hereditary    時(shí)間: 2025-3-24 12:03
Computer Science Workbenchhttp://image.papertrans.cn/c/image/233565.jpg
作者: ARC    時(shí)間: 2025-3-24 17:45

作者: cumulative    時(shí)間: 2025-3-24 21:05
Bach to Rock, A Musical Odysseygenerated curve or surface, their positions completely determine its shape. The vertices for a curve are an ordered sequence and are connected in succession to form a (closed or open) . (Figure 7.1). This sequence of vertices will be denoted..
作者: demote    時(shí)間: 2025-3-25 02:06

作者: jovial    時(shí)間: 2025-3-25 05:06

作者: mastopexy    時(shí)間: 2025-3-25 10:59
Technology and the Human: Hans Jonasxpression for the curve will have a denominator of δ(.). It is thus of computational interest to define corresponding sets of coefficient functions and basis functions that are scaled by a factor of δ(.). This would simplify the expressions and eliminate redundant divisions. These scaled coefficient
作者: 滔滔不絕地說    時(shí)間: 2025-3-25 13:58

作者: MONY    時(shí)間: 2025-3-25 17:22
Technik der Impfstoffe und Heilsera involves the computation of points on the surface for many different values of the domain parameters. The determination of a point on the patch requires the evaluation of the surface formulation at an appropriate (.) value. This entails the evaluation of the four basis functions at the value of . a
作者: 猛然一拉    時(shí)間: 2025-3-25 22:33
https://doi.org/10.1007/978-3-663-04316-4pe parameters. Analogous to the Beta-spline curve, they will now be generalized to be . shape parameters, each varying continuously along the surface. The continuous analogues of β1 and β2 will be denoted β1.(.) and β2.(.), respectively, and describe the value of each shape parameter at the point ..
作者: sleep-spindles    時(shí)間: 2025-3-26 03:58
Technik der Maschinen-Buchhaltung information specified by the control vertices. These shape parameters have the property that β1 = 1 indicates continuity of the parametric first derivative vector and β1 = 1 with β2 = 0 indicates continuity of the parametric first and second derivative vectors.
作者: condone    時(shí)間: 2025-3-26 07:39

作者: 內(nèi)疚    時(shí)間: 2025-3-26 11:00

作者: 自作多情    時(shí)間: 2025-3-26 13:45

作者: HALL    時(shí)間: 2025-3-26 16:47
https://doi.org/10.1007/978-94-009-9900-8uitively “pull out” these points by increasing tension. This concept was first analytically modeled by Schweikert in [23] and an alternative development was given in [6] and generalized in [19]. A detailed derivation of the generalized form based on a variational principle is given in [1].
作者: FLORA    時(shí)間: 2025-3-26 22:01

作者: incredulity    時(shí)間: 2025-3-27 02:20

作者: cardiovascular    時(shí)間: 2025-3-27 08:50
Technik der Maschinen-Buchhaltung information specified by the control vertices. These shape parameters have the property that β1 = 1 indicates continuity of the parametric first derivative vector and β1 = 1 with β2 = 0 indicates continuity of the parametric first and second derivative vectors.
作者: Rotator-Cuff    時(shí)間: 2025-3-27 12:42
Bach to Rock, A Musical OdysseyThe underlying concept of this work is the synthesis of two useful concepts: the application of . to a shape; and the study of the . and . of a parametrically defined shape as fundamental geometric measures.
作者: Hyperplasia    時(shí)間: 2025-3-27 16:40
https://doi.org/10.1007/978-94-009-9900-8The parametric representation of a curve has each component expressed as a separate univariate (single parameter) function while that of a surface has each component defined by a separate bivariate (two parameter) function.
作者: Figate    時(shí)間: 2025-3-27 19:45
Heidegger’s Philosophy of TechnologyConsider a space curve (in three dimensions) parametrized with respect to an arbitrary parameter . [8, 9, 10, 15, 24]. The unit tangent vector has the same direction and sense as the parametric first derivative vector, but it is normalized.
作者: stressors    時(shí)間: 2025-3-28 00:09

作者: 惡意    時(shí)間: 2025-3-28 03:16

作者: 印第安人    時(shí)間: 2025-3-28 08:00

作者: angina-pectoris    時(shí)間: 2025-3-28 13:02
https://doi.org/10.1007/978-3-663-04316-4An important observation is that β1.(.) and β2.(.) (equation (14.3)) can each be written as a pair of equations of similar form; specifically,.where . and . were defined in equation (14.3).
作者: PTCA635    時(shí)間: 2025-3-28 17:57

作者: octogenarian    時(shí)間: 2025-3-28 21:45
https://doi.org/10.1007/978-3-642-99434-0In computer graphics, it is of interest to . a Beta-spline, that is, create a realistic two-dimensional image representing three-dimensional Beta-spline objects. This chapter shows several synthetic color images of Beta-spline objects including such features as specular highlights and texture patterns.
作者: Processes    時(shí)間: 2025-3-28 23:30

作者: Graphite    時(shí)間: 2025-3-29 04:25
The Parametric Piecewise Representation,The parametric representation of a curve has each component expressed as a separate univariate (single parameter) function while that of a surface has each component defined by a separate bivariate (two parameter) function.
作者: 波動(dòng)    時(shí)間: 2025-3-29 07:55

作者: 雕鏤    時(shí)間: 2025-3-29 14:09

作者: incite    時(shí)間: 2025-3-29 16:12
Geometric Continuity and Shape Parameters,Given the two curves ..(.) and ..(.), consider the joint .. Recalling equation (4.1), continuity of the unit tangent vector is achieved if.that is,.or..
作者: 浸軟    時(shí)間: 2025-3-29 23:10
Explanation of the Surface Representation,A point on the (.). Beta-spline surface patch is a weighted average of the sixteen vertices .., . = ?2, ?1, 0, 1 and . = ?2, ?1,0,1. The mathematical formulation for the patch ..(.) is then
作者: 沒有準(zhǔn)備    時(shí)間: 2025-3-30 01:38

作者: 我正派    時(shí)間: 2025-3-30 04:24

作者: 土產(chǎn)    時(shí)間: 2025-3-30 11:05

作者: Preserve    時(shí)間: 2025-3-30 12:39
Generalizing to Continuous Shape Parameters for Curves,he user to have more precise control over the shape of the curve. The user is no longer constrained to choose a unique value for each shape parameter over the entire curve. Now, different values of the shape parameters can be used to reflect the local character of the curve.
作者: 傻瓜    時(shí)間: 2025-3-30 20:17
Classification and Analysis of Beta-spline Curve End Conditions,ions, as well as an analysis of their geometric properties, was previously presented by the author in [3]. Analogous discussions for the Beta-spline curve and surface representations are presented in this section and Chapter 16, respectively.
作者: 舉止粗野的人    時(shí)間: 2025-3-31 00:35
Technology and the Human: Hans Jonasd prior to the actual computation of the Beta-spline basis functions. The following algorithm evaluates the basis functions at . + 1 given values of the domain parameter ., for a given value of each uniform shape parameter, β1 and β2, and requires 7 + 9(. + 1) multiplications, 12 + 2 + 9(. + 1) additions/subtractions, and 8 divisions.
作者: mortuary    時(shí)間: 2025-3-31 01:11

作者: Pigeon    時(shí)間: 2025-3-31 08:02

作者: 肉身    時(shí)間: 2025-3-31 10:49
Curve Evaluation and Perturbation with Uniform Shape Parameters,d prior to the actual computation of the Beta-spline basis functions. The following algorithm evaluates the basis functions at . + 1 given values of the domain parameter ., for a given value of each uniform shape parameter, β1 and β2, and requires 7 + 9(. + 1) multiplications, 12 + 2 + 9(. + 1) additions/subtractions, and 8 divisions.
作者: 失誤    時(shí)間: 2025-3-31 15:22

作者: ostrish    時(shí)間: 2025-3-31 21:24

作者: Harrowing    時(shí)間: 2025-4-1 00:05
A Phenomenology of Instrumentationhe user to have more precise control over the shape of the curve. The user is no longer constrained to choose a unique value for each shape parameter over the entire curve. Now, different values of the shape parameters can be used to reflect the local character of the curve.
作者: stress-response    時(shí)間: 2025-4-1 04:33

作者: 喃喃訴苦    時(shí)間: 2025-4-1 09:08

作者: ingestion    時(shí)間: 2025-4-1 13:04
Computer Graphics and Geometric Modeling Using Beta-splines
作者: 橫截,橫斷    時(shí)間: 2025-4-1 14:58





歡迎光臨 派博傳思國際中心 (http://www.pjsxioz.cn/) Powered by Discuz! X3.5
澎湖县| 清丰县| 延川县| 夏津县| 塔河县| 南平市| 工布江达县| 湖州市| 通海县| 福鼎市| 防城港市| 顺平县| 佛坪县| 克山县| 洪湖市| 温泉县| 黑河市| 曲沃县| 全南县| 闻喜县| 嘉兴市| 卢湾区| 孝义市| 乃东县| 马尔康县| 富平县| 株洲市| 永修县| 内丘县| 苗栗县| 老河口市| 高淳县| 洛隆县| 五莲县| 海兴县| 新野县| 隆德县| 固镇县| 宜州市| 津南区| 青州市|