派博傳思國際中心

標(biāo)題: Titlebook: Computational Diffusion MRI; 12th International W Suheyla Cetin-Karayumak,Daan Christiaens,Tomasz Pi Conference proceedings 2021 Springer N [打印本頁]

作者: 淹沒    時間: 2025-3-21 18:20
書目名稱Computational Diffusion MRI影響因子(影響力)




書目名稱Computational Diffusion MRI影響因子(影響力)學(xué)科排名




書目名稱Computational Diffusion MRI網(wǎng)絡(luò)公開度




書目名稱Computational Diffusion MRI網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Computational Diffusion MRI被引頻次




書目名稱Computational Diffusion MRI被引頻次學(xué)科排名




書目名稱Computational Diffusion MRI年度引用




書目名稱Computational Diffusion MRI年度引用學(xué)科排名




書目名稱Computational Diffusion MRI讀者反饋




書目名稱Computational Diffusion MRI讀者反饋學(xué)科排名





作者: judicial    時間: 2025-3-21 22:13

作者: violate    時間: 2025-3-22 01:20

作者: 多產(chǎn)子    時間: 2025-3-22 06:13
Generalised Hierarchical Bayesian Microstructure Modelling for Diffusion MRI The model is typically fit voxel-by-voxel to the MRI image with least squares minimisation to give voxelwise maps of parameters relating to microstructural?features, such as diffusivities and tissue compartment fractions. However, this fitting approach is susceptible to voxelwise noise, which can l
作者: Ostrich    時間: 2025-3-22 12:04
Brain Tissue Microstructure Characterization Using dMRI Based Autoencoder Neural-Networks Imaging (dMRI) data. One of the main drawbacks of this approach is that the number of microstructural features needs to be decided a priori and it is embedded in the model definition. However, the number of microstructural features which is possible to obtain from dMRI data given the acquisition sc
作者: motor-unit    時間: 2025-3-22 16:36
Synthesizing VERDICT Maps from Standard DWI Data Using GANs-invasively. However, the quantitative estimation of VERDICT maps requires a specific diffusion-weighed imaging (DWI) acquisition. In this study we investigate the feasibility of synthesizing VERDICT maps from standard DWI data from multi-parametric (mp)-MRI by employing conditional generative adver
作者: motor-unit    時間: 2025-3-22 17:35
A Novel Algorithm for Region-to-Region Tractography in Diffusion Tensor Imaging-weighted MRI images, which can be representative of brain white matter fibers. In this work we consider the problem of constructing bundles of tracks between seed and target regions in the most efficient way. In contrast to streamline based methods, a naive region-to-region geodesic approach for fi
作者: 周年紀(jì)念日    時間: 2025-3-22 23:50
Fast Tractography Streamline Searchon enables the use of binary search trees to increase the tractography clustering speed without reducing its accuracy. This hierarchical framework offers an upper bound and a lower bound for the point-wise distance between two streamlines, which guarantees the validity of a proximity search. The res
作者: TAP    時間: 2025-3-23 04:27

作者: bioavailability    時間: 2025-3-23 07:17
Diffusion MRI Automated Region of?Interest Analysis in Standard Atlas Space versus the Individual’s RI images as a tensor. Classic DTI parameters (e.g., mean diffusivity or MD, fractional anisotropy or FA) derived from the eigenvalues of tensors have been widely used to describe white matter properties. More recently, novel metrics like neurite orientation dispersion and density imaging (NODDI) ha
作者: dagger    時間: 2025-3-23 12:42
Bundle Geodesic Convolutional Neural Network for DWI Segmentation from?Single Scan Learninglassifier is based on a Riemannian Deep Learning framework for extracting features with rotational invariance, where we extend a G-CNN learning architecture generically on a Riemannian manifold. We validate our framework using single-shell DWI data with a very limited amount of training data - only
作者: 密碼    時間: 2025-3-23 14:30

作者: 辯論    時間: 2025-3-23 19:47
Accelerating Geometry-Based Spherical Harmonics Glyphs Rendering for dMRI Using Modern OpenGLgh Angular Resolution Diffusion Imaging acquisitions, it is possible to reconstruct fiber orientation distribution functions (fODF) describing the apparent quantity of white matter fibers going through a voxel for some arbitrary direction. Because these fODF are signals on the sphere, they are usual
作者: 啜泣    時間: 2025-3-23 22:58

作者: 遠(yuǎn)足    時間: 2025-3-24 04:20

作者: amyloid    時間: 2025-3-24 08:54

作者: Conducive    時間: 2025-3-24 12:53
https://doi.org/10.1007/978-3-663-04514-4from the diffusion tensor, and the fiber orientations from the fiber orientation distribution function. Quantitative evaluation was carried out on the number of diffusion gradient directions, different orthogonal acquisitions, and enhanced 4D volumes from scattered data interpolation of multiple ser
作者: glucagon    時間: 2025-3-24 18:51

作者: 漫不經(jīng)心    時間: 2025-3-24 19:34

作者: Ischemia    時間: 2025-3-25 02:49

作者: BOGUS    時間: 2025-3-25 05:53
Ermittlungsm?glichkeiten der Steuerfahndungical applicability, we present a novel, efficient algorithm for region-to-region geodesic tractography?which extends existing point-to-point algorithms and incorporates anatomical knowledge by assuming a topographic organization?of fibers. The proposed method connects only seed and target voxels tha
作者: Notorious    時間: 2025-3-25 07:33
Ausl?ser für Ermittlungen der Steuerfahndungg., the FSL XTRACT toolbox, provides an alternative method of ROI analysis by estimating tract regions in an individual native diffusion space, but the exact advantages and disadvantages compared to using a standard space have not been well documented. In the present study, we perform ROI analysis o
作者: Spina-Bifida    時間: 2025-3-25 13:54

作者: 行業(yè)    時間: 2025-3-25 17:13
Grundzüge des Ermittlungsverfahrenst to account for brain lesions and deformations, four preprocessing strategies are applied to dMRI, including the novel application of a lesion normalization technique to dMRI. The pipeline involving the lesion normalization technique provides the best prediction performance, with a mean accuracy of
作者: 輕而薄    時間: 2025-3-25 21:52
https://doi.org/10.1007/978-3-322-90596-3crostructure. We report the ground-truth tissue volume fractions (“intra-axonal”, “extra-axonal”, “myelin”), the fibre density, the bundle density and the fibre orientation distributions (FODs). We believe that this characterization will be beneficial for validating quantitative structural connectiv
作者: 歡呼    時間: 2025-3-26 01:20

作者: avarice    時間: 2025-3-26 05:52

作者: BARK    時間: 2025-3-26 10:01

作者: Freeze    時間: 2025-3-26 16:23
Generalised Hierarchical Bayesian Microstructure Modelling for Diffusion MRIrostructural?models, and fit the models with a Markov chain Monte Carlo (MCMC)?algorithm. We implement our method by utilising Dmipy, a microstructure?modelling software package for diffusion MRI?data. Our code is available at github.com/PaddySlator/dmipy-bayesian.
作者: optional    時間: 2025-3-26 18:50
Brain Tissue Microstructure Characterization Using dMRI Based Autoencoder Neural-Networks data fidelity and the number of microstructural features. Our results show how this number is impacted by the number of shells and the .-values used to sample the dMRI signal. We also show how our technique paves the way to a richer characterization of the brain tissue microstructure in-vivo.
作者: 情感    時間: 2025-3-26 22:54
A Novel Algorithm for Region-to-Region Tractography in Diffusion Tensor Imagingical applicability, we present a novel, efficient algorithm for region-to-region geodesic tractography?which extends existing point-to-point algorithms and incorporates anatomical knowledge by assuming a topographic organization?of fibers. The proposed method connects only seed and target voxels tha
作者: 共同確定為確    時間: 2025-3-27 03:40
Diffusion MRI Automated Region of?Interest Analysis in Standard Atlas Space versus the Individual’s g., the FSL XTRACT toolbox, provides an alternative method of ROI analysis by estimating tract regions in an individual native diffusion space, but the exact advantages and disadvantages compared to using a standard space have not been well documented. In the present study, we perform ROI analysis o
作者: PAEAN    時間: 2025-3-27 07:53

作者: 無孔    時間: 2025-3-27 10:47

作者: 大吃大喝    時間: 2025-3-27 15:53
The Microstructural Features of the Diffusion-Simulated Connectivity (DiSCo) Datasetcrostructure. We report the ground-truth tissue volume fractions (“intra-axonal”, “extra-axonal”, “myelin”), the fibre density, the bundle density and the fibre orientation distributions (FODs). We believe that this characterization will be beneficial for validating quantitative structural connectiv
作者: DAUNT    時間: 2025-3-27 18:58

作者: 魅力    時間: 2025-3-27 23:09

作者: 劇本    時間: 2025-3-28 02:26

作者: 評論者    時間: 2025-3-28 09:38
https://doi.org/10.1007/978-3-663-04514-4eatly limited in Signal-to-Noise ratio and spatial resolution. Due to the uncontrollable fetal motion, echo planar imaging acquisitions often result in highly degraded images, hence the ability to depict precise diffusion MR properties remains unknown. To the best of our knowledge, this is the first
作者: Congeal    時間: 2025-3-28 10:52
Ausl?ser für Ermittlungen der Steuerfahndungecific parameters that can be used for tumour characterization, treatment personalisation and monitoring, response assessment and prediction of radiotherapy outcomes. In particular, DW–MRI is opening up promising perspectives in radiotherapy applications as it is suitable for characterizing tissues
作者: 公社    時間: 2025-3-28 18:16

作者: Creatinine-Test    時間: 2025-3-28 18:50

作者: AND    時間: 2025-3-29 02:49

作者: 萬神殿    時間: 2025-3-29 06:10

作者: AV-node    時間: 2025-3-29 11:15

作者: Barrister    時間: 2025-3-29 13:09
Ermittlungsm?glichkeiten der Steuerfahndungtomical structures that often provide meaningful comparisons across subjects. However, the geometry of white matter tracts is highly heterogeneous, and finding direct tract-correspondence across multiple individuals remains a challenging problem. We present a novel deformation metric between tracts
作者: Amendment    時間: 2025-3-29 17:52

作者: Resign    時間: 2025-3-29 21:51
Ausl?ser für Ermittlungen der Steuerfahndunglassifier is based on a Riemannian Deep Learning framework for extracting features with rotational invariance, where we extend a G-CNN learning architecture generically on a Riemannian manifold. We validate our framework using single-shell DWI data with a very limited amount of training data - only
作者: Climate    時間: 2025-3-30 01:11
Grundzüge des Ermittlungsverfahrense seizure one week after TBI (late seizure) are at high risk for lifelong complications of TBI, such as post-traumatic epilepsy (PTE). Identifying which TBI patients are at risk of developing seizures remains a challenge. Although magnetic resonance imaging (MRI) methods that probe structural and fu
作者: GRIN    時間: 2025-3-30 04:08
Ausl?ser für Ermittlungen der Steuerfahndunggh Angular Resolution Diffusion Imaging acquisitions, it is possible to reconstruct fiber orientation distribution functions (fODF) describing the apparent quantity of white matter fibers going through a voxel for some arbitrary direction. Because these fODF are signals on the sphere, they are usual
作者: inferno    時間: 2025-3-30 09:33

作者: GRACE    時間: 2025-3-30 12:56

作者: Corral    時間: 2025-3-30 17:29
Lecture Notes in Computer Sciencehttp://image.papertrans.cn/c/image/232235.jpg
作者: 難管    時間: 2025-3-30 21:45
Ermittlungsm?glichkeiten der Steuerfahndung along with the deformation fields represented by tangent vectors from the mean. In this setting, one can determine a parallel transport between tracts and then register corresponding tangent vectors. We present the results of bundle alignment on a population of 43 healthy adult subjects.
作者: 現(xiàn)代    時間: 2025-3-31 03:33

作者: 爭吵    時間: 2025-3-31 06:46
Conference proceedings 2021 conjunction with MICCAI 2021. The conference was planned to take place in Strasbourg, France, but was held virtually due to the COVID-19 pandemic. ..The 13 full papers included were carefully reviewed and selected for inclusion in the book. The proceedings also contain a paper about the design and
作者: 有花    時間: 2025-3-31 12:56
0302-9743 sections as follows: acquisition; microstructure modelling; tractography and connectivity; applications and visualization; DiSCo challenge – invited contribution. .978-3-030-87614-2978-3-030-87615-9Series ISSN 0302-9743 Series E-ISSN 1611-3349
作者: DECRY    時間: 2025-3-31 17:24





歡迎光臨 派博傳思國際中心 (http://www.pjsxioz.cn/) Powered by Discuz! X3.5
闽侯县| 渝中区| 泸水县| 横峰县| 双桥区| 公主岭市| 博野县| 聂拉木县| 莱西市| 南溪县| 综艺| 镇江市| 年辖:市辖区| 大城县| 鲁山县| 湘潭市| 陆河县| 重庆市| 建阳市| 昌邑市| 梧州市| 瑞金市| 吉林省| 环江| 秦皇岛市| 宜宾县| 马山县| 山西省| 新宁县| 虎林市| 昌黎县| 沙坪坝区| 二连浩特市| 将乐县| 西宁市| 金坛市| 威信县| 嘉兴市| 德昌县| 龙井市| 双柏县|