派博傳思國際中心

標(biāo)題: Titlebook: Combinatorial Methods in Density Estimation; Luc Devroye,Gábor Lugosi Book 2001 Springer-Verlag New York, Inc. 2001 Density Estimation.Lik [打印本頁]

作者: Traction    時間: 2025-3-21 17:37
書目名稱Combinatorial Methods in Density Estimation影響因子(影響力)




書目名稱Combinatorial Methods in Density Estimation影響因子(影響力)學(xué)科排名




書目名稱Combinatorial Methods in Density Estimation網(wǎng)絡(luò)公開度




書目名稱Combinatorial Methods in Density Estimation網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Combinatorial Methods in Density Estimation被引頻次




書目名稱Combinatorial Methods in Density Estimation被引頻次學(xué)科排名




書目名稱Combinatorial Methods in Density Estimation年度引用




書目名稱Combinatorial Methods in Density Estimation年度引用學(xué)科排名




書目名稱Combinatorial Methods in Density Estimation讀者反饋




書目名稱Combinatorial Methods in Density Estimation讀者反饋學(xué)科排名





作者: filial    時間: 2025-3-21 21:03

作者: 顯示    時間: 2025-3-22 01:48
Bandwidth Choice with Superkernels,l—all densities in them must be infinitely many times continuously differentiate—this is an almost pointless exercise. Instead, we consider the ultimate kernels, those for which Φ(.) = .(1/√.). Clearly, .(1/√.) is the best possible rate, as Lemma 1 shows.
作者: 原告    時間: 2025-3-22 05:14

作者: Vertical    時間: 2025-3-22 10:37
H. Bauer,Ch. Korunka,M. Leodolterese densities cover ., that is, if these chosen densities are .. = {.1,…,..}, then . where .. = {. : ∫ |. ? .| ≤ .}. The smallest such .. is called the . (or .) of . (and thus is a function of .), and log... is the . of .. .. is called a . of ..
作者: finale    時間: 2025-3-22 13:24

作者: finale    時間: 2025-3-22 19:20
Skeleton Estimates,ese densities cover ., that is, if these chosen densities are .. = {.1,…,..}, then . where .. = {. : ∫ |. ? .| ≤ .}. The smallest such .. is called the . (or .) of . (and thus is a function of .), and log... is the . of .. .. is called a . of ..
作者: Kindle    時間: 2025-3-22 23:45

作者: 隱語    時間: 2025-3-23 01:22

作者: seduce    時間: 2025-3-23 08:52
Book 2001of the selection of the bin widths. This text explores a new paradigm for the data-based or automatic selection of the free parameters of density estimates in general so that the expected error is within a given constant multiple of the best possible error. The paradigm can be used in nearly all den
作者: carotenoids    時間: 2025-3-23 09:43

作者: 暗語    時間: 2025-3-23 15:27

作者: dithiolethione    時間: 2025-3-23 18:18

作者: 枯燥    時間: 2025-3-24 01:44

作者: intention    時間: 2025-3-24 06:14
Skeleton Estimates, in are totally bounded, that is, for every . > 0, there exists a finite number .. of densities in . such that the .. balls of radius . centered at these densities cover ., that is, if these chosen densities are .. = {.1,…,..}, then . where .. = {. : ∫ |. ? .| ≤ .}. The smallest such .. is called th
作者: Benzodiazepines    時間: 2025-3-24 06:59
The Minimum Distance Estimate: Examples,t the skeleton estimate defined in the previous chapter always works when . is totally bounded. In this chapter we analyze the minimum distance estimate described in Section 6.8. Assume that the densities .. ∈ . are indexed by a parameter . ∈ Θ.
作者: 自傳    時間: 2025-3-24 12:53

作者: 歡呼    時間: 2025-3-24 15:22
Additive Estimates and Data Splitting,o construct a density estimate .. whose .. error is (almost) as small as that of the best estimate among the .., . ∈ Θ. Applying the minimum distance estimate of Chapter 5 directly to this class is often problematic because of the dependence of each estimate in the class and the empirical measure ..
作者: 松軟無力    時間: 2025-3-24 21:42
Multiparameter Kernel Estimates,almost optimal manner. The examples are all simple multiparameter versions of the kernel estimate. Once again, the methods applied here are fully combinatorial, as the only thing we need in each case is a suitable upper bound for the shatter coefficient appearing in Theorem 10.3.
作者: Keratectomy    時間: 2025-3-25 02:19

作者: 專橫    時間: 2025-3-25 07:05
Bandwidth Choice with Superkernels, . an even positive integer. So, in theory, if we could find a kernel all of whose moments are vanishing, then we could hope for a rate Φ(.) that is better than .. for all ε > 0. So, is it possible to find such kernels? Can we simultaneously insure ∫ . = 1, yet ∫ ...(.) . = 0 for all . > 0? The answ
作者: Haphazard    時間: 2025-3-25 11:02
Shuhei Yamaguchi,Robert T. Knightsets. As it is a function that reveals the local concentration of probability mass, it may be used to visualize distributions of random variables. The statistician’s problem, then, is to estimate . from an i.i.d. sample ..,…,.. drawn from .. A density estimate is simply a mapping .. : .. × (..). → .
作者: 其他    時間: 2025-3-25 11:51
https://doi.org/10.1007/978-1-4757-1379-4le combinatorial calculations. The aim of this and the following two chapters is to equip the reader with these simple tools. We keep the material at an elementary level, with additional information added in the exercises.
作者: 消散    時間: 2025-3-25 16:44

作者: Communicate    時間: 2025-3-25 23:30

作者: filial    時間: 2025-3-26 04:00

作者: 你敢命令    時間: 2025-3-26 06:00

作者: FLIT    時間: 2025-3-26 09:52
Slow Potential Changes in the Human Brainis vast, and a lot of it is ancient. The problem is that . cannot be approximated in .. by .., the empirical measure, as the total variation distance between any density . and any atomic measure (like ..) is 1. Thus, the approximation itself must have a density. The kernel estimate provides this: it
作者: MIME    時間: 2025-3-26 13:33

作者: Predigest    時間: 2025-3-26 20:47

作者: Vulnerable    時間: 2025-3-27 00:26

作者: CT-angiography    時間: 2025-3-27 02:59

作者: 消散    時間: 2025-3-27 07:09
Springer Series in Statisticshttp://image.papertrans.cn/c/image/229941.jpg
作者: 合唱團(tuán)    時間: 2025-3-27 13:24
Oscar Herreras,George G. SomjenThis chapter is devoted to some basic inequalities that bound the maximal difference between probabilities and relative frequencies over a class of events. The bounds will be key tools in our study of density estimates. Let ..,…,.. be i.i.d. random variables taking values in .. with common distribution
作者: 徹底明白    時間: 2025-3-27 17:19
https://doi.org/10.1007/978-1-4899-1597-9Consider a class . of subsets of .., and let ..,…,.. ∈ .. be arbitrary points. Recall from the previous chapter that properties of the finite set .(..) ? {0, 1}. defined by . play an essential role in bounding uniform deviations of the empirical measure.
作者: 落葉劑    時間: 2025-3-27 21:30
https://doi.org/10.1007/3-7643-7537-XThis chapter is about the choice of the bandwidth (or smoothing factor) . ∈ (0, ∞) of the standard kernel estimate
作者: MIRTH    時間: 2025-3-27 23:08

作者: 壯麗的去    時間: 2025-3-28 04:57
https://doi.org/10.1007/3-7643-7537-XThe transformed kernel estimate on the real line was introduced in an attempt to reduce the .. error in a relatively cheap manner. The data are first transformed . : . → . by a strictly monotonically increasing almost everywhere differentiable transformation .: .. = .(..),…,.. = .(..). The density of .. is . where .. denotes the inverse of ..
作者: hypnotic    時間: 2025-3-28 08:18

作者: engrave    時間: 2025-3-28 13:44
Uniform Deviation Inequalities,This chapter is devoted to some basic inequalities that bound the maximal difference between probabilities and relative frequencies over a class of events. The bounds will be key tools in our study of density estimates. Let ..,…,.. be i.i.d. random variables taking values in .. with common distribution
作者: Lacerate    時間: 2025-3-28 18:35
Combinatorial Tools,Consider a class . of subsets of .., and let ..,…,.. ∈ .. be arbitrary points. Recall from the previous chapter that properties of the finite set .(..) ? {0, 1}. defined by . play an essential role in bounding uniform deviations of the empirical measure.
作者: Interregnum    時間: 2025-3-28 21:43

作者: Endoscope    時間: 2025-3-29 01:18

作者: synchronous    時間: 2025-3-29 06:59
The Transformed Kernel Estimate,The transformed kernel estimate on the real line was introduced in an attempt to reduce the .. error in a relatively cheap manner. The data are first transformed . : . → . by a strictly monotonically increasing almost everywhere differentiable transformation .: .. = .(..),…,.. = .(..). The density of .. is . where .. denotes the inverse of ..
作者: Throttle    時間: 2025-3-29 07:25

作者: 確定    時間: 2025-3-29 11:49

作者: definition    時間: 2025-3-29 17:36
https://doi.org/10.1007/978-1-4757-1379-4le combinatorial calculations. The aim of this and the following two chapters is to equip the reader with these simple tools. We keep the material at an elementary level, with additional information added in the exercises.
作者: 恫嚇    時間: 2025-3-29 22:37
Slow Potential Changes in the Human Brain). More precisely, given the sample .., …, .. distributed according to density ., we are asked to construct a density estimate .. such that . This simple problem turns out to be surprisingly difficult, even if the estimates .. and .. are fixed densities, not depending on the data.
作者: Vulnerary    時間: 2025-3-30 02:24

作者: enmesh    時間: 2025-3-30 08:05
S. E. G. Nilsson,O. Textorius,E. Welindero construct a density estimate .. whose .. error is (almost) as small as that of the best estimate among the .., . ∈ Θ. Applying the minimum distance estimate of Chapter 5 directly to this class is often problematic because of the dependence of each estimate in the class and the empirical measure ...
作者: A精確的    時間: 2025-3-30 10:09

作者: FLEET    時間: 2025-3-30 14:16
https://doi.org/10.1007/3-7643-7537-Xlass ., which is given to us. Our estimate of . is .(.), where . should be such that it is best possible. As we do not know ., we naturally assume that after . is picked, our adversary picks the worst . ? ..
作者: Discrete    時間: 2025-3-30 20:15

作者: 新奇    時間: 2025-3-30 21:38

作者: Myocarditis    時間: 2025-3-31 04:17

作者: 排出    時間: 2025-3-31 07:22
Additive Estimates and Data Splitting,o construct a density estimate .. whose .. error is (almost) as small as that of the best estimate among the .., . ∈ Θ. Applying the minimum distance estimate of Chapter 5 directly to this class is often problematic because of the dependence of each estimate in the class and the empirical measure ...




歡迎光臨 派博傳思國際中心 (http://www.pjsxioz.cn/) Powered by Discuz! X3.5
噶尔县| 池州市| 湖南省| 乌拉特中旗| 绥化市| 北辰区| 南漳县| 浠水县| 古丈县| 海盐县| 会宁县| 凤山市| 鸡泽县| 如皋市| 南昌县| 蚌埠市| 灵寿县| 古蔺县| 武陟县| 自治县| 裕民县| 湟源县| 平乡县| 娱乐| 沐川县| 兴业县| 洮南市| 呼图壁县| 青神县| 寿宁县| 大渡口区| 临汾市| 江永县| 时尚| 安陆市| 冷水江市| 嘉鱼县| 蛟河市| 青冈县| 交口县| 平罗县|