派博傳思國際中心

標(biāo)題: Titlebook: Cohomology of Sheaves; Birger Iversen Textbook 1986 Springer-Verlag Berlin Heidelberg 1986 Characteristic class.Chern class.Homotopy.cohom [打印本頁]

作者: Glitch    時(shí)間: 2025-3-21 18:10
書目名稱Cohomology of Sheaves影響因子(影響力)




書目名稱Cohomology of Sheaves影響因子(影響力)學(xué)科排名




書目名稱Cohomology of Sheaves網(wǎng)絡(luò)公開度




書目名稱Cohomology of Sheaves網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Cohomology of Sheaves被引頻次




書目名稱Cohomology of Sheaves被引頻次學(xué)科排名




書目名稱Cohomology of Sheaves年度引用




書目名稱Cohomology of Sheaves年度引用學(xué)科排名




書目名稱Cohomology of Sheaves讀者反饋




書目名稱Cohomology of Sheaves讀者反饋學(xué)科排名





作者: 百科全書    時(shí)間: 2025-3-21 20:41
Textbook 1986ult is obtainable without turn- ing to particular classes of topological spaces. The most satis- factory general class is that of locally compact spaces and it is the study of such spaces which occupies the central part of this text. The fundamental concepts in the study of locally compact spaces is
作者: Analogy    時(shí)間: 2025-3-22 01:58

作者: 過去分詞    時(shí)間: 2025-3-22 08:04

作者: 的是兄弟    時(shí)間: 2025-3-22 11:15

作者: 沉著    時(shí)間: 2025-3-22 15:24
978-3-540-16389-3Springer-Verlag Berlin Heidelberg 1986
作者: 沉著    時(shí)間: 2025-3-22 18:06

作者: 衰老    時(shí)間: 2025-3-22 22:51
Severe Community-Acquired Pneumonia,By a . we understand a non-empty set I equipped with a preorder, i.e. a relation satisfying.subject to the condition that for any a∈ I and b ∈ I there exists c∈I with a ≤ c and b ≤ c.
作者: 表皮    時(shí)間: 2025-3-23 04:43

作者: unstable-angina    時(shí)間: 2025-3-23 08:58
Intra-Abdominal Hypertension and MODS,In this section we shall prove that sheaf cohomology with constant coefficient is a . . of the space. Recall that continuous maps f,g: X → Y are said to be homotopic if there exists a continuous map F: X × [0,1] → Y with
作者: monochromatic    時(shí)間: 2025-3-23 09:50

作者: GLUT    時(shí)間: 2025-3-23 14:50

作者: enchant    時(shí)間: 2025-3-23 19:19

作者: Cirrhosis    時(shí)間: 2025-3-24 01:29
B. A. Zehnbauer,B. D. Freeman,T. G. BuchmanIn this section we consider a fixed commutative ring k. Let us recall that the inclusion i: Z → X of a closed subspace gives rise to two functors . which are mutually adjoints . The functor i. is left exact and carries injectives into injectives. We shall study the derived functor R.i., p ∈?.
作者: 帶來的感覺    時(shí)間: 2025-3-24 02:40
A. E. Baue,G. Berlot,J.-L. VincentThroughout this section we consider a commutative no- etherian ring k and let K* denote an injective resolution of k in the category of k-modules. For a complex C* of k-modules we put . For a locally compact space X we define . the i’th . with coefficients in k.
作者: impaction    時(shí)間: 2025-3-24 07:49

作者: 散步    時(shí)間: 2025-3-24 12:07

作者: Jacket    時(shí)間: 2025-3-24 18:14

作者: 和平    時(shí)間: 2025-3-24 20:18
Sheaf Theory,By a . we understand a non-empty set I equipped with a preorder, i.e. a relation satisfying.subject to the condition that for any a∈ I and b ∈ I there exists c∈I with a ≤ c and b ≤ c.
作者: 健談的人    時(shí)間: 2025-3-25 00:01

作者: Synthesize    時(shí)間: 2025-3-25 06:39

作者: 歌唱隊(duì)    時(shí)間: 2025-3-25 11:13

作者: 運(yùn)動(dòng)性    時(shí)間: 2025-3-25 14:32

作者: 減震    時(shí)間: 2025-3-25 17:32

作者: 娘娘腔    時(shí)間: 2025-3-25 20:02
Characteristic Classes,In this section we consider a fixed commutative ring k. Let us recall that the inclusion i: Z → X of a closed subspace gives rise to two functors . which are mutually adjoints . The functor i. is left exact and carries injectives into injectives. We shall study the derived functor R.i., p ∈?.
作者: GOUGE    時(shí)間: 2025-3-26 02:21

作者: 謙卑    時(shí)間: 2025-3-26 04:35
Application to Algebraic Geometry,In this chapter we shall give an introduction to the topology of algebraic varieties over the complex numbers. For all unexplained notation we refer to Fulton (1).
作者: 河流    時(shí)間: 2025-3-26 09:58
Derived Categories,Let us consider an additive category K and a system S of morphisms subjected to conditions FR 1, 2, 3 below. To these data we shall associate an additive category S.κ
作者: ineptitude    時(shí)間: 2025-3-26 13:08
Universitexthttp://image.papertrans.cn/c/image/229266.jpg
作者: 自然環(huán)境    時(shí)間: 2025-3-26 17:44

作者: 禁令    時(shí)間: 2025-3-27 00:22
6樓
作者: amplitude    時(shí)間: 2025-3-27 04:58
6樓
作者: PURG    時(shí)間: 2025-3-27 05:27
6樓
作者: 終點(diǎn)    時(shí)間: 2025-3-27 10:23
7樓
作者: PURG    時(shí)間: 2025-3-27 16:26
7樓
作者: extract    時(shí)間: 2025-3-27 20:57
7樓
作者: Adulate    時(shí)間: 2025-3-27 23:45
7樓
作者: 藐視    時(shí)間: 2025-3-28 04:31
8樓
作者: blister    時(shí)間: 2025-3-28 06:29
8樓
作者: nettle    時(shí)間: 2025-3-28 13:18
8樓
作者: 殺蟲劑    時(shí)間: 2025-3-28 17:13
9樓
作者: Density    時(shí)間: 2025-3-28 21:42
9樓
作者: sacrum    時(shí)間: 2025-3-29 00:42
9樓
作者: 鋪?zhàn)?nbsp;   時(shí)間: 2025-3-29 04:41
9樓
作者: 浮雕    時(shí)間: 2025-3-29 10:06
10樓
作者: 兒童    時(shí)間: 2025-3-29 13:14
10樓
作者: CLAN    時(shí)間: 2025-3-29 15:41
10樓
作者: NEG    時(shí)間: 2025-3-29 20:24
10樓




歡迎光臨 派博傳思國際中心 (http://www.pjsxioz.cn/) Powered by Discuz! X3.5
北海市| 张掖市| 广宁县| 涿州市| 临朐县| 吴江市| 墨脱县| 哈巴河县| 新竹市| 中超| 东海县| 兴城市| 雷州市| 陇南市| 乐陵市| 永宁县| 禄丰县| 岳阳市| 固阳县| 南康市| 潞西市| 阿拉善右旗| 邳州市| 上蔡县| 丰宁| 慈溪市| 南雄市| 马关县| 长阳| 吉木乃县| 鸡西市| 武夷山市| 和政县| 都昌县| 兴国县| 弥渡县| 罗甸县| 建湖县| 中卫市| 澄城县| 民乐县|