派博傳思國際中心

標題: Titlebook: Cohomology of Number Fields; Jürgen Neukirch,Alexander Schmidt,Kay Wingberg Book 2008Latest edition The Editor(s) (if applicable) and The [打印本頁]

作者: Hypothesis    時間: 2025-3-21 19:22
書目名稱Cohomology of Number Fields影響因子(影響力)




書目名稱Cohomology of Number Fields影響因子(影響力)學(xué)科排名




書目名稱Cohomology of Number Fields網(wǎng)絡(luò)公開度




書目名稱Cohomology of Number Fields網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Cohomology of Number Fields被引頻次




書目名稱Cohomology of Number Fields被引頻次學(xué)科排名




書目名稱Cohomology of Number Fields年度引用




書目名稱Cohomology of Number Fields年度引用學(xué)科排名




書目名稱Cohomology of Number Fields讀者反饋




書目名稱Cohomology of Number Fields讀者反饋學(xué)科排名





作者: 切碎    時間: 2025-3-21 20:33

作者: gustation    時間: 2025-3-22 00:34

作者: Surgeon    時間: 2025-3-22 07:54
Cohomology of Local Fieldst to a discrete valuation and has a finite residue field. This covers two cases, namely .-., i.e. finite extensions of . for some prime number ., and .. in one variable over a finite field. For the basic properties of local fields we refer to [160], chapters II and V. As always, . denotes a separabl
作者: Commission    時間: 2025-3-22 09:06

作者: Munificent    時間: 2025-3-22 15:22
Iwasawa Theory of Number Fieldse variable over a finite field. This analogy should also extend to the theory of .-functions and .-functions of global fields. If, for a function field ., one considers the corresponding smooth and proper curve ., where . is the field of constants of ., then the .-function of the curve . is a ration
作者: Munificent    時間: 2025-3-22 19:03

作者: 窗簾等    時間: 2025-3-22 22:26

作者: 灰心喪氣    時間: 2025-3-23 05:04
Mechanisms of Innate Immunity in Sepsis,few conceptual results. For example, there is a famous conjecture due to . which asserts that the subgroup .. of .. is a free profinite group, where .(.) is the field obtained from . by adjoining all roots of unity. This was proved by . [171] for function fields, but the conjecture is open in the number field case.
作者: carotenoids    時間: 2025-3-23 07:39

作者: Indict    時間: 2025-3-23 11:44
The Absolute Galois Group of a Global Fieldfew conceptual results. For example, there is a famous conjecture due to . which asserts that the subgroup .. of .. is a free profinite group, where .(.) is the field obtained from . by adjoining all roots of unity. This was proved by . [171] for function fields, but the conjecture is open in the number field case.
作者: FELON    時間: 2025-3-23 14:05

作者: 東西    時間: 2025-3-23 20:17
Iwasawa Theory of Number Fieldsoring with ., one obtains a .-vector space of dimension 2., where . is the genus of .. The characteristic polynomial with respect to the endomorphism .. is the essential part of the .-function of the curve ..
作者: 不開心    時間: 2025-3-24 01:25

作者: 保存    時間: 2025-3-24 04:56

作者: 護航艦    時間: 2025-3-24 06:34

作者: 紳士    時間: 2025-3-24 12:06

作者: languid    時間: 2025-3-24 17:17
Justin Wong MD, FRCPC,Anand Kumar MD, FRCPCThe Iwasawa algebra, usually denoted by the Greek letter Λ, is the complete group algebra . of a group Γ, which is . isomorphic to .. This means that we will not specify a particular isomorphism . or, equivalently, we will not fix a topological generator . of the procyclic group Γ.
作者: Arteriography    時間: 2025-3-24 20:52
Ian Nesbitt MBBS(Hons), FRCA, DICM(UK)Having established the cohomology theory for local fields, we now begin its development for global fields, i.e. algebraic number fields and function fields in one variable over a finite field. The cohomology theory treats both types of fields equally.
作者: Fraudulent    時間: 2025-3-25 02:25

作者: conceal    時間: 2025-3-25 06:57
Cohomology of Profinite GroupsProfinite groups are topological groups which naturally occur in algebraic number theory as Galois groups of infinite field extensions or more generally as étale fundamental groups of schemes. Their cohomology groups often contain important arithmetic information.
作者: galley    時間: 2025-3-25 09:20

作者: paroxysm    時間: 2025-3-25 12:52
Iwasawa ModulesThe Iwasawa algebra, usually denoted by the Greek letter Λ, is the complete group algebra . of a group Γ, which is . isomorphic to .. This means that we will not specify a particular isomorphism . or, equivalently, we will not fix a topological generator . of the procyclic group Γ.
作者: obsession    時間: 2025-3-25 19:06
Cohomology of Global FieldsHaving established the cohomology theory for local fields, we now begin its development for global fields, i.e. algebraic number fields and function fields in one variable over a finite field. The cohomology theory treats both types of fields equally.
作者: 制造    時間: 2025-3-25 23:03

作者: ablate    時間: 2025-3-26 03:22
https://doi.org/10.1007/978-3-540-37889-1Galois group; Galois groups; algebra; algebraic number field; algebraic number fields; algebraic number t
作者: 轉(zhuǎn)換    時間: 2025-3-26 05:35

作者: 額外的事    時間: 2025-3-26 08:53

作者: 概觀    時間: 2025-3-26 13:09
A Current View of Oxygen Supply Dependencyalled . (to 1) if every open subgroup . of . contains the images ..(..) for almost all ., i.e. all but a finite number. The free products of pro-.-groups are defined by the following universal property.
作者: Substance-Abuse    時間: 2025-3-26 19:38

作者: 確定方向    時間: 2025-3-26 23:09

作者: Cardiac-Output    時間: 2025-3-27 02:40
Mechanisms of Innate Immunity in Sepsis,sions of a fixed base field . (where the most important case is .), which means exploring how these extensions are built up over each other, how they are related and how they can be classified. In other words, we want to study the structure of the absolute Galois group .. of . as a profinite group.
作者: 宣誓書    時間: 2025-3-27 05:58
H. Hahn,G. Daeschlein,J. Wagnere variable over a finite field. This analogy should also extend to the theory of .-functions and .-functions of global fields. If, for a function field ., one considers the corresponding smooth and proper curve ., where . is the field of constants of ., then the .-function of the curve . is a ration
作者: 樹木中    時間: 2025-3-27 12:42
Corticoids in Severe Pneumonia,e understand the matter, a group is far enough away from being abelian if all of its subgroups of finite index have a trivial center. The principal idea is the following: in topology, a space . of type .(.,1) is determined by its fundamental group . up to weak homotopy equivalence. If we require tha
作者: 嗎啡    時間: 2025-3-27 14:57

作者: conifer    時間: 2025-3-27 18:04
0072-7830 Overview: In the words of a reviewer: “This monograph gives a very complete treatment of a vast array of central topics in algebraic number theory.There is so much material written down systematically which was978-3-662-51745-1978-3-540-37889-1Series ISSN 0072-7830 Series E-ISSN 2196-9701
作者: POWER    時間: 2025-3-28 01:56
A Current View of Oxygen Supply Dependencyalled . (to 1) if every open subgroup . of . contains the images ..(..) for almost all ., i.e. all but a finite number. The free products of pro-.-groups are defined by the following universal property.
作者: 音樂等    時間: 2025-3-28 02:13
https://doi.org/10.1007/978-1-4939-7334-7g chapters. We are particularly interested in the meaning of the cohomology groups ..(.,.) for extensions of local and global fields, but we first study their properties for general Galois extensions .|..
作者: 愛哭    時間: 2025-3-28 07:37

作者: 偽證    時間: 2025-3-28 11:57

作者: Chauvinistic    時間: 2025-3-28 15:47
Free Products of Profinite Groupsalled . (to 1) if every open subgroup . of . contains the images ..(..) for almost all ., i.e. all but a finite number. The free products of pro-.-groups are defined by the following universal property.
作者: Glossy    時間: 2025-3-28 20:27

作者: 積極詞匯    時間: 2025-3-28 22:55

作者: 某人    時間: 2025-3-29 06:39

作者: predict    時間: 2025-3-29 07:19
9樓
作者: 折磨    時間: 2025-3-29 13:56
9樓
作者: Harness    時間: 2025-3-29 15:34
10樓
作者: 心痛    時間: 2025-3-29 20:03
10樓
作者: 巨碩    時間: 2025-3-30 01:19
10樓
作者: 充滿人    時間: 2025-3-30 06:41
10樓




歡迎光臨 派博傳思國際中心 (http://www.pjsxioz.cn/) Powered by Discuz! X3.5
斗六市| 汕头市| 海林市| 麦盖提县| 图们市| 娄烦县| 长沙市| 琼结县| 泰州市| 乌拉特中旗| 石门县| 沂水县| 丰县| 西丰县| 江口县| 土默特左旗| 横山县| 汶上县| 巴林左旗| 伊川县| 万盛区| 沙田区| 翁牛特旗| 容城县| 车致| 屯门区| 项城市| 酒泉市| 克山县| 四子王旗| 达拉特旗| 乐安县| 紫云| 工布江达县| 剑河县| 五大连池市| 锡林浩特市| 舒兰市| 调兵山市| 博乐市| 南安市|