標題: Titlebook: Clustering Methods for Big Data Analytics; Techniques, Toolboxe Olfa Nasraoui,Chiheb-Eddine Ben N‘Cir Book 2019 Springer Nature Switzerland [打印本頁] 作者: 空格 時間: 2025-3-21 18:34
書目名稱Clustering Methods for Big Data Analytics影響因子(影響力)
書目名稱Clustering Methods for Big Data Analytics影響因子(影響力)學科排名
書目名稱Clustering Methods for Big Data Analytics網(wǎng)絡公開度
書目名稱Clustering Methods for Big Data Analytics網(wǎng)絡公開度學科排名
書目名稱Clustering Methods for Big Data Analytics被引頻次
書目名稱Clustering Methods for Big Data Analytics被引頻次學科排名
書目名稱Clustering Methods for Big Data Analytics年度引用
書目名稱Clustering Methods for Big Data Analytics年度引用學科排名
書目名稱Clustering Methods for Big Data Analytics讀者反饋
書目名稱Clustering Methods for Big Data Analytics讀者反饋學科排名
作者: Emmenagogue 時間: 2025-3-21 22:56 作者: 愚笨 時間: 2025-3-22 00:37 作者: 蜈蚣 時間: 2025-3-22 08:24 作者: galley 時間: 2025-3-22 11:04 作者: Missile 時間: 2025-3-22 14:49 作者: Missile 時間: 2025-3-22 18:34 作者: 大洪水 時間: 2025-3-23 00:24
,Schwei?en von Aluminiumwerkstoffen,uch data into groups of similar objects. Several methods were proposed during the last decade to deal with this important challenge. We propose in this chapter an overview of the existing clustering methods with a special emphasis on scalable partitional methods. We design a new categorizing model b作者: 改良 時間: 2025-3-23 03:11 作者: 巫婆 時間: 2025-3-23 06:34
,Prüfung von Schwei?verbindungen,of these datasets has diverse applications, such as detecting fraud and illegal transactions, characterizing major services, identifying financial hotspots, and characterizing usage and performance characteristics of large peer-to-peer consensus-based systems. Unsupervised learning methods in genera作者: PACT 時間: 2025-3-23 11:28
Schwei?technische Fertigungsverfahren 2ing classification tasks which are considered supervised learning. Deep learning has also been widely used to learn richer and better data representations from big data, without relying too much on human engineered features. Even though it started mostly within the realm of supervised learning, deep作者: 在前面 時間: 2025-3-23 14:41 作者: 坦白 時間: 2025-3-23 19:23 作者: senile-dementia 時間: 2025-3-24 00:53
,Schwei?en von Aluminiumwerkstoffen,-based algorithms, most notably tensor decomposition, are becoming a core tool for data analysis and knowledge discovery, including clustering. Intuitively, tensor decomposition process generalizes matrix decomposition to high-dimensional arrays (known as tensors) and rewrites the given tensor in th作者: 菊花 時間: 2025-3-24 04:37 作者: Audiometry 時間: 2025-3-24 09:13 作者: Infirm 時間: 2025-3-24 12:25 作者: Delude 時間: 2025-3-24 18:32 作者: Osteons 時間: 2025-3-24 19:44 作者: Haphazard 時間: 2025-3-25 01:19 作者: 中子 時間: 2025-3-25 07:06 作者: Migratory 時間: 2025-3-25 08:22
Clustering Blockchain Data,of these datasets has diverse applications, such as detecting fraud and illegal transactions, characterizing major services, identifying financial hotspots, and characterizing usage and performance characteristics of large peer-to-peer consensus-based systems. Unsupervised learning methods in genera作者: 充氣女 時間: 2025-3-25 11:40
An Introduction to Deep Clustering,ing classification tasks which are considered supervised learning. Deep learning has also been widely used to learn richer and better data representations from big data, without relying too much on human engineered features. Even though it started mostly within the realm of supervised learning, deep作者: Urea508 時間: 2025-3-25 16:20
Spark-Based Design of Clustering Using Particle Swarm Optimization,effective solution for Big data. However, MapReduce is unsuitable for iterative algorithms since it requires repeated times of reading and writing to disks. In addition, PSO suffers from a low convergence speed when it approaches the global optimum region. To deal with these issues, we propose in th作者: apiary 時間: 2025-3-25 20:01
Data Stream Clustering for Real-Time Anomaly Detection: An Application to Insider Threats,rs. The continuous streaming of unbounded data coming from various sources in an organisation, typically in a high velocity, leads to a typical Big Data computational problem. The malicious insider threat refers to anomalous behaviour(s) (outliers) that deviate from the normal baseline of a data str作者: CODE 時間: 2025-3-26 01:40
Effective Tensor-Based Data Clustering Through Sub-Tensor Impact Graphs,-based algorithms, most notably tensor decomposition, are becoming a core tool for data analysis and knowledge discovery, including clustering. Intuitively, tensor decomposition process generalizes matrix decomposition to high-dimensional arrays (known as tensors) and rewrites the given tensor in th作者: 分貝 時間: 2025-3-26 08:06 作者: 冷淡周邊 時間: 2025-3-26 12:17
Clustering Blockchain Data,s tailored to the characteristics of such data. This chapter motivates the study of clustering methods for blockchain data, and introduces the key blockchain concepts from a data-centric perspective. It presents different models and methods used for clustering blockchain data, and describes the chal作者: lobster 時間: 2025-3-26 16:38 作者: legacy 時間: 2025-3-26 18:33 作者: 浮夸 時間: 2025-3-26 22:57 作者: 擴大 時間: 2025-3-27 05:11
,Fehler und Sch?den an Schwei?verbindungen,d. Approaches that efficiently combine the anytime clustering concept with the stream subspace clustering paradigm are discussed. Additionally, efficient and adaptive density-based clustering algorithms are presented for high-dimensional data streams. Novel open-source assessment framework and evalu作者: chlorosis 時間: 2025-3-27 09:05
,Prüfung von Schwei?verbindungen,s tailored to the characteristics of such data. This chapter motivates the study of clustering methods for blockchain data, and introduces the key blockchain concepts from a data-centric perspective. It presents different models and methods used for clustering blockchain data, and describes the chal作者: 行為 時間: 2025-3-27 10:55 作者: 核心 時間: 2025-3-27 17:33
,Prüfung von Schwei?verbindungen,Random subspace Anomaly detectors In Data Streams (E-RAIDS), for insider threat detection. E-RAIDS learns an ensemble of . established outlier detection techniques [Micro-cluster-based Continuous Outlier Detection (.) or Anytime Outlier Detection (.)] which employ clustering over continuous data str作者: 使苦惱 時間: 2025-3-27 19:49 作者: FLUSH 時間: 2025-3-28 00:33
2522-848X s. The chapters in the book include a balanced coverage of big data clustering theory, methods, tools, frameworks, applications, representation, visualization, and clustering validation..978-3-030-07419-7978-3-319-97864-2Series ISSN 2522-848X Series E-ISSN 2522-8498 作者: 不能妥協(xié) 時間: 2025-3-28 05:55
Conference proceedings 2013ina as well as their future prospects, such as green product design, quality control and management, supply chain and logistics management to address the need for, amongst other things low-carbon, energy-saving and emission-reduction. They also offer opinions on the outlook for the development of re作者: 廚房里面 時間: 2025-3-28 08:11
The Energy Driven Hot Carrier Modeloleranzbedingten Raum zwischen angrenzenden Bauteilen”, also R?ume, die zur Vermeidung von Zw?ngungskr?ften und / oder zur Erzielung eines passungsgerechten Zusammenfügens von Bauteilen angeordnet werden bzw. angeordnet werden müssen. Entsprechend den Aufgaben dieser Bauteilfugen unterscheidet man作者: Bravura 時間: 2025-3-28 13:40 作者: adulterant 時間: 2025-3-28 16:06
Book 1910 sind. Der Verlag stellt mit diesem Archiv Quellen für die historische wie auch die disziplingeschichtliche Forschung zur Verfügung, die jeweils im historischen Kontext betrachtet werden müssen. Dieser Titel erschien in der Zeit vor 1945 und wird daher in seiner zeittypischen politisch-ideologischen