派博傳思國(guó)際中心

標(biāo)題: Titlebook: Clifford Algebras; Geometric Modelling Daniel Klawitter Book 2015 Springer Fachmedien Wiesbaden 2015 Cayley-Klein geometries.Clifford alge [打印本頁(yè)]

作者: 公款    時(shí)間: 2025-3-21 17:42
書(shū)目名稱(chēng)Clifford Algebras影響因子(影響力)




書(shū)目名稱(chēng)Clifford Algebras影響因子(影響力)學(xué)科排名




書(shū)目名稱(chēng)Clifford Algebras網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱(chēng)Clifford Algebras網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱(chēng)Clifford Algebras被引頻次




書(shū)目名稱(chēng)Clifford Algebras被引頻次學(xué)科排名




書(shū)目名稱(chēng)Clifford Algebras年度引用




書(shū)目名稱(chēng)Clifford Algebras年度引用學(xué)科排名




書(shū)目名稱(chēng)Clifford Algebras讀者反饋




書(shū)目名稱(chēng)Clifford Algebras讀者反饋學(xué)科排名





作者: foreign    時(shí)間: 2025-3-21 22:55

作者: SPURN    時(shí)間: 2025-3-22 01:25
Kinematic Mappings for Spin Groups, construction is accomplished in detail for the threedimensional Euclidean space. Furthermore, the kinematic mapping of Study and the mapping of Blaschke and Grünwald are constructed in a unified method. Matrices of the collineations in the image and pre-image space are derived. The construction is
作者: 事先無(wú)準(zhǔn)備    時(shí)間: 2025-3-22 06:52

作者: 1分開(kāi)    時(shí)間: 2025-3-22 10:51
http://image.papertrans.cn/c/image/227344.jpg
作者: 不怕任性    時(shí)間: 2025-3-22 16:57
Chain Geometry over Clifford Algebras,introduce the concepts we need for our purposes. For a more detailed introduction the reader is referred to [11]. The roots of chain geometry can be found in B. [5]. B. investigated projective lines over commutative two-dimensional algebras and the corresponding chain geometries. A more recent treatise is [33].
作者: 不怕任性    時(shí)間: 2025-3-22 19:46

作者: 暗指    時(shí)間: 2025-3-22 22:50
Responses to Nazism in Britain, 1933-1939introduce the concepts we need for our purposes. For a more detailed introduction the reader is referred to [11]. The roots of chain geometry can be found in B. [5]. B. investigated projective lines over commutative two-dimensional algebras and the corresponding chain geometries. A more recent treat
作者: arsenal    時(shí)間: 2025-3-23 03:55
The Reasons of the Intellectuals construction is accomplished in detail for the threedimensional Euclidean space. Furthermore, the kinematic mapping of Study and the mapping of Blaschke and Grünwald are constructed in a unified method. Matrices of the collineations in the image and pre-image space are derived. The construction is
作者: glowing    時(shí)間: 2025-3-23 08:09

作者: DEMUR    時(shí)間: 2025-3-23 10:15

作者: 萬(wàn)神殿    時(shí)間: 2025-3-23 14:05
978-3-658-07617-7Springer Fachmedien Wiesbaden 2015
作者: Gleason-score    時(shí)間: 2025-3-23 19:39
dean displacements Daniel Klawitter gives a comprehensive introduction into Clifford algebras. The Clifford algebra calculus is used to construct new models that allow descriptions of the group of projective transformations and inversions with respect to hyperquadrics. Afterwards, chain geometries o
作者: Musculoskeletal    時(shí)間: 2025-3-23 22:22

作者: 不再流行    時(shí)間: 2025-3-24 05:17

作者: gimmick    時(shí)間: 2025-3-24 07:50

作者: alcohol-abuse    時(shí)間: 2025-3-24 10:52
Book 2015eory and the developed methods to the homogeneous Clifford algebra model corresponding to Euclidean geometry. Moreover, kinematic mappings for special Cayley-Klein geometries are developed. These mappings allow a description of existing kinematic mappings in a unifying framework.
作者: Panther    時(shí)間: 2025-3-24 17:31
Book 2015s. The Clifford algebra calculus is used to construct new models that allow descriptions of the group of projective transformations and inversions with respect to hyperquadrics. Afterwards, chain geometries over Clifford algebras and their subchain geometries are examined. The author applies this th
作者: Blasphemy    時(shí)間: 2025-3-24 21:49
The Reasons of the Intellectualsaccomplished in detail for the Euclidean spaces of dimension two and three. After that, we give an overview of possible kinematic mappings for Cayley-Klein spaces of dimension two and three. Moreover, the mapping for the four-dimensional Euclidean space is presented. This chapter is already published, see [41].
作者: Common-Migraine    時(shí)間: 2025-3-25 00:13

作者: 航海太平洋    時(shí)間: 2025-3-25 05:45
6樓
作者: ALOFT    時(shí)間: 2025-3-25 09:37
7樓
作者: boisterous    時(shí)間: 2025-3-25 14:37
7樓
作者: 執(zhí)    時(shí)間: 2025-3-25 16:40
7樓
作者: 不在灌木叢中    時(shí)間: 2025-3-25 22:03
7樓
作者: 動(dòng)物    時(shí)間: 2025-3-26 02:29
8樓
作者: 泰然自若    時(shí)間: 2025-3-26 08:02
8樓
作者: orthodox    時(shí)間: 2025-3-26 09:23
8樓
作者: floaters    時(shí)間: 2025-3-26 13:38
9樓
作者: 細(xì)菌等    時(shí)間: 2025-3-26 19:24
9樓
作者: septicemia    時(shí)間: 2025-3-27 00:03
9樓
作者: 熟練    時(shí)間: 2025-3-27 04:50
9樓
作者: Obedient    時(shí)間: 2025-3-27 06:57
10樓
作者: escalate    時(shí)間: 2025-3-27 09:36
10樓
作者: 圣人    時(shí)間: 2025-3-27 14:16
10樓
作者: 徹底檢查    時(shí)間: 2025-3-27 18:41
10樓




歡迎光臨 派博傳思國(guó)際中心 (http://www.pjsxioz.cn/) Powered by Discuz! X3.5
山阳县| 封开县| 安溪县| 米林县| 苏尼特右旗| 临漳县| 扎赉特旗| 宝清县| 措勤县| 新郑市| 盘锦市| 青神县| 小金县| 信丰县| 新竹市| 南木林县| 湖州市| 格尔木市| 苍梧县| 阿拉善右旗| 武强县| 项城市| 宽城| 读书| 滁州市| 新津县| 武清区| 休宁县| 个旧市| 博客| 阿巴嘎旗| 宁国市| 上杭县| 绍兴县| 宝清县| 松阳县| 临邑县| 上犹县| 滨州市| 通州市| 桐城市|