標(biāo)題: Titlebook: Classical and New Inequalities in Analysis; D. S. Mitrinovi?,J. E. Pe?ari?,A. M. Fink Book 1993 Springer Science+Business Media Dordrecht [打印本頁(yè)] 作者: 雜技演員 時(shí)間: 2025-3-21 18:00
書目名稱Classical and New Inequalities in Analysis影響因子(影響力)
書目名稱Classical and New Inequalities in Analysis影響因子(影響力)學(xué)科排名
書目名稱Classical and New Inequalities in Analysis網(wǎng)絡(luò)公開度
書目名稱Classical and New Inequalities in Analysis網(wǎng)絡(luò)公開度學(xué)科排名
書目名稱Classical and New Inequalities in Analysis被引頻次
書目名稱Classical and New Inequalities in Analysis被引頻次學(xué)科排名
書目名稱Classical and New Inequalities in Analysis年度引用
書目名稱Classical and New Inequalities in Analysis年度引用學(xué)科排名
書目名稱Classical and New Inequalities in Analysis讀者反饋
書目名稱Classical and New Inequalities in Analysis讀者反饋學(xué)科排名
作者: Priapism 時(shí)間: 2025-3-21 23:19 作者: strain 時(shí)間: 2025-3-22 01:52 作者: Provenance 時(shí)間: 2025-3-22 07:04
,Steffensen’s Inequality,onograph of G. H. Hardy, J. Littlewood, and G. Pólya [.] Steffensen’s paper was not reviewed in Jahrbuch über die Fortschritte der Matematik. It is however, mentioned by G. Szeg? in his review of the papers [.] and [.] by T. Hayashi.作者: 小溪 時(shí)間: 2025-3-22 09:14
Mathematics and its Applicationshttp://image.papertrans.cn/c/image/227155.jpg作者: 溫順 時(shí)間: 2025-3-22 16:44 作者: 溫順 時(shí)間: 2025-3-22 20:45
978-90-481-4225-5Springer Science+Business Media Dordrecht 1993作者: VEST 時(shí)間: 2025-3-22 21:43 作者: DAUNT 時(shí)間: 2025-3-23 02:45 作者: 爆米花 時(shí)間: 2025-3-23 06:49
,Steffensen’s Inequality,onograph of G. H. Hardy, J. Littlewood, and G. Pólya [.] Steffensen’s paper was not reviewed in Jahrbuch über die Fortschritte der Matematik. It is however, mentioned by G. Szeg? in his review of the papers [.] and [.] by T. Hayashi.作者: Spongy-Bone 時(shí)間: 2025-3-23 13:10 作者: 不給啤 時(shí)間: 2025-3-23 15:50
0169-507X Overview: 978-90-481-4225-5978-94-017-1043-5Series ISSN 0169-507X 作者: deficiency 時(shí)間: 2025-3-23 18:48
Norbert Fuhr,László Kovács,Wolfgang Nejdlonograph of G. H. Hardy, J. Littlewood, and G. Pólya [.] Steffensen’s paper was not reviewed in Jahrbuch über die Fortschritte der Matematik. It is however, mentioned by G. Szeg? in his review of the papers [.] and [.] by T. Hayashi.作者: 干涉 時(shí)間: 2025-3-24 01:34 作者: Cumulus 時(shí)間: 2025-3-24 05:18
Linking Information with Distributed ObjectsW. Sierpiński [.] proved in 1909, the following inequalities..where .., .. and .. are respectively the arithmetic, geometric, and harmonic means of a sequence . = (..,…, ..).作者: overweight 時(shí)間: 2025-3-24 06:31 作者: Infelicity 時(shí)間: 2025-3-24 13:42 作者: Harbor 時(shí)間: 2025-3-24 16:54
Christopher York,Clifford Wulfman,Greg CraneLet . a nonempty set and . be a linear class of real valued functions . on . having the properties作者: 馬籠頭 時(shí)間: 2025-3-24 22:01 作者: abysmal 時(shí)間: 2025-3-25 02:46
Jane Hunter,Katya Falkovych,Suzanne LittleIn this Chapter we shall give some determinantal and matrix inequalities connected to the inequalities given in previous chapters.作者: 甜得發(fā)膩 時(shí)間: 2025-3-25 05:59 作者: LIMIT 時(shí)間: 2025-3-25 09:57
Profile-Based Selection of Expert GroupsGeneral linear inequalities are old inequalities. We are not sure who is the author of such inequalities. So we shall given here only some basic facts about such inequalities but only for monotonic functions and some related results.作者: 獨(dú)裁政府 時(shí)間: 2025-3-25 12:08
Profile-Based Selection of Expert GroupsLet us consider the problem of the best approximation of a vector . by vectors of an orthonormal system from a Hilbert space .. For every system of numbers λ.,...,λ. we have作者: Omnipotent 時(shí)間: 2025-3-25 19:47 作者: Enervate 時(shí)間: 2025-3-25 22:59
Metadata repositories using PICS,The triangle inequality for real and complex numbers are basic and appear in any analysis book.作者: VEN 時(shí)間: 2025-3-26 02:38
https://doi.org/10.1007/978-3-319-67008-9In this Chapter we look at inequalities for norms which are related to the triangle inequality. Several of these are attached to the names, e.g. Clarkson’s, Dunkl-Williams’ and Hlawka’s.作者: avenge 時(shí)間: 2025-3-26 05:41
https://doi.org/10.1007/978-3-319-67008-9H. Xu and Z. Xu [.] claimed the following inequality in . . (1 < . < 2):.where . ∈ . ., 0 ≤ . ≤ 1, λ = 1 ? ., in the case when the function . is given by .(.) = . λ(. ? 1).作者: ticlopidine 時(shí)間: 2025-3-26 10:50
,Convex Functions and Jensen’s Inequality,In this Chapter we give some introductory material and basic inequalities which are repeatedly used. We will begin with convex functions and Jensen’s inequality.作者: 漂亮才會(huì)豪華 時(shí)間: 2025-3-26 16:00 作者: 旋轉(zhuǎn)一周 時(shí)間: 2025-3-26 20:01
,Bernoulli’s Inequality,If . > ?1 and if . is a positive integer, then 作者: 哀悼 時(shí)間: 2025-3-26 22:35
,H?lder’s and Minkowski’s Inequalities,One of the most important inequalities of analysis is H?lder’s inequality.作者: 逃避系列單詞 時(shí)間: 2025-3-27 02:01 作者: GLARE 時(shí)間: 2025-3-27 05:46
Connections between General Inequalities,It is well-known that there exist many connections between general inequalities. Some of these connections were noted in previous chapters. So in Remark 1 of 4. of Chapter V we gave the equivalence.where . is H?lder’s inequality, and . is Cauchy’s inequality.作者: Dri727 時(shí)間: 2025-3-27 12:27
Some Determinantal and Matrix Inequalities,In this Chapter we shall give some determinantal and matrix inequalities connected to the inequalities given in previous chapters.作者: 慟哭 時(shí)間: 2025-3-27 16:36 作者: agnostic 時(shí)間: 2025-3-27 19:53
,Abel’s and Related Inequalities,General linear inequalities are old inequalities. We are not sure who is the author of such inequalities. So we shall given here only some basic facts about such inequalities but only for monotonic functions and some related results.作者: amphibian 時(shí)間: 2025-3-28 01:51 作者: occult 時(shí)間: 2025-3-28 03:30
Cyclic Inequalities,The type of inequality studied in this Chapter are inequalities for forms which are symmetric in several variables. The simplest is Schur’s inequality. We end with some related inequalities.作者: 寬敞 時(shí)間: 2025-3-28 07:02
Triangle Inequalities,The triangle inequality for real and complex numbers are basic and appear in any analysis book.作者: Kaleidoscope 時(shí)間: 2025-3-28 11:23 作者: 竊喜 時(shí)間: 2025-3-28 16:09
More on Norm Inequalities,H. Xu and Z. Xu [.] claimed the following inequality in . . (1 < . < 2):.where . ∈ . ., 0 ≤ . ≤ 1, λ = 1 ? ., in the case when the function . is given by .(.) = . λ(. ? 1).作者: 輕觸 時(shí)間: 2025-3-28 18:51
5樓作者: 匍匐前進(jìn) 時(shí)間: 2025-3-29 00:55
6樓作者: 閑逛 時(shí)間: 2025-3-29 06:29
6樓作者: Noctambulant 時(shí)間: 2025-3-29 08:36
6樓作者: 審問(wèn),審訊 時(shí)間: 2025-3-29 14:00
6樓作者: 根除 時(shí)間: 2025-3-29 16:00
7樓作者: 克制 時(shí)間: 2025-3-29 20:07
7樓作者: BAIL 時(shí)間: 2025-3-30 03:43
7樓作者: 掙扎 時(shí)間: 2025-3-30 06:15
7樓作者: 聲音刺耳 時(shí)間: 2025-3-30 09:40
8樓作者: 星球的光亮度 時(shí)間: 2025-3-30 14:31
8樓作者: 內(nèi)行 時(shí)間: 2025-3-30 16:38
8樓作者: 容易懂得 時(shí)間: 2025-3-30 22:26
9樓作者: Entreaty 時(shí)間: 2025-3-31 02:12
9樓作者: 實(shí)現(xiàn) 時(shí)間: 2025-3-31 05:47
9樓作者: 確保 時(shí)間: 2025-3-31 10:15
9樓作者: archenemy 時(shí)間: 2025-3-31 14:57
10樓作者: accessory 時(shí)間: 2025-3-31 19:45
10樓作者: 不愛防注射 時(shí)間: 2025-4-1 00:58
10樓作者: 不能仁慈 時(shí)間: 2025-4-1 05:45
10樓