標(biāo)題: Titlebook: Class Field Theory; From Theory to Pract Georges Gras Book 2003 Springer-Verlag Berlin Heidelberg 2003 Abelian closure.Class field theory.a [打印本頁] 作者: Pierce 時(shí)間: 2025-3-21 17:52
書目名稱Class Field Theory影響因子(影響力)
書目名稱Class Field Theory影響因子(影響力)學(xué)科排名
書目名稱Class Field Theory網(wǎng)絡(luò)公開度
書目名稱Class Field Theory網(wǎng)絡(luò)公開度學(xué)科排名
書目名稱Class Field Theory被引頻次
書目名稱Class Field Theory被引頻次學(xué)科排名
書目名稱Class Field Theory年度引用
書目名稱Class Field Theory年度引用學(xué)科排名
書目名稱Class Field Theory讀者反饋
書目名稱Class Field Theory讀者反饋學(xué)科排名
作者: 敬禮 時(shí)間: 2025-3-22 00:17 作者: 無所不知 時(shí)間: 2025-3-22 02:12 作者: AVOW 時(shí)間: 2025-3-22 08:12 作者: chapel 時(shí)間: 2025-3-22 10:35
Repair and Servicing of Road Vehiclesl class field theory, as was initiated by Hasse and Schmidt in 1930, and in particular to base some local computations on global arguments (a typical example being the global computation of a local Hilbert symbol in 7.5); however here, in the description of the results, we will go from local to global, which seems more natural.作者: antenna 時(shí)間: 2025-3-22 13:20
Jack Hirst,John Whipp,Roy Brooksd abelian extension . whose structure is always complicated as soon as the invariants . or .. are nontrivial. Concerning this, we will have to make an assumption on the group . when . ≥ 2, but the case . = 1 can be solved without any assumption.作者: antenna 時(shí)間: 2025-3-22 19:43 作者: 清楚 時(shí)間: 2025-3-22 21:20 作者: VERT 時(shí)間: 2025-3-23 02:22 作者: 放縱 時(shí)間: 2025-3-23 09:16
Springer Monographs in Mathematicshttp://image.papertrans.cn/c/image/226989.jpg作者: 極小量 時(shí)間: 2025-3-23 13:00 作者: 漫不經(jīng)心 時(shí)間: 2025-3-23 16:05
Repair and Servicing of Road Vehiclescesses, will enable us to understand the structure of the maximal abelian extension of a number field . (Section 4 of the present chapter). Indeed, since any finite abelian extension of . is contained in a ray class field .(m)., we have ., where m ranges in the set of moduli of ..作者: angiography 時(shí)間: 2025-3-23 18:12
Repair and Servicing of Road Vehiclesiori completely different, and one usually studies the corresponding invariants of . using several means. This chapter explains the two classical approaches: invariant classes formulas and genus theory.作者: 殖民地 時(shí)間: 2025-3-23 23:29 作者: macrophage 時(shí)間: 2025-3-24 05:35
https://doi.org/10.1007/978-3-662-11323-3Abelian closure; Class field theory; algebra; idele groups; number fields; number theory; reciprocity laws作者: 消息靈通 時(shí)間: 2025-3-24 07:15
978-3-642-07908-5Springer-Verlag Berlin Heidelberg 2003作者: 自負(fù)的人 時(shí)間: 2025-3-24 11:29 作者: 高歌 時(shí)間: 2025-3-24 15:12
Repair and Servicing of Road Vehiclescesses, will enable us to understand the structure of the maximal abelian extension of a number field . (Section 4 of the present chapter). Indeed, since any finite abelian extension of . is contained in a ray class field .(m)., we have ., where m ranges in the set of moduli of ..作者: Foregery 時(shí)間: 2025-3-24 21:47 作者: Mercurial 時(shí)間: 2025-3-25 00:36 作者: 擦掉 時(shí)間: 2025-3-25 05:09
Invariant Class Groups in ,-Ramification Genus Theory,iori completely different, and one usually studies the corresponding invariants of . using several means. This chapter explains the two classical approaches: invariant classes formulas and genus theory.作者: BOOR 時(shí)間: 2025-3-25 07:38
https://doi.org/10.1007/978-1-349-11098-8This chapter gives the definitions of the objects which will be used throughout this book. We are thus led to give the main general notations.作者: 描繪 時(shí)間: 2025-3-25 14:58
Basic Tools and Notations,This chapter gives the definitions of the objects which will be used throughout this book. We are thus led to give the main general notations.作者: 臭名昭著 時(shí)間: 2025-3-25 16:30
Reciprocity Maps Existence Theorems,nd commented so as to be used. This is so true that, as we will see several times, a classical proof consists in . local class field theory from global class field theory, as was initiated by Hasse and Schmidt in 1930, and in particular to base some local computations on global arguments (a typical 作者: reception 時(shí)間: 2025-3-25 21:06
,Abelian Extensions with Restricted Ramification — Abelian Closure,cesses, will enable us to understand the structure of the maximal abelian extension of a number field . (Section 4 of the present chapter). Indeed, since any finite abelian extension of . is contained in a ray class field .(m)., we have ., where m ranges in the set of moduli of ..作者: 作繭自縛 時(shí)間: 2025-3-26 02:23 作者: climax 時(shí)間: 2025-3-26 04:54 作者: 一再遛 時(shí)間: 2025-3-26 11:55
7樓作者: 合并 時(shí)間: 2025-3-26 12:40
8樓作者: V切開 時(shí)間: 2025-3-26 18:35
8樓作者: Trochlea 時(shí)間: 2025-3-26 22:41
8樓作者: Cirrhosis 時(shí)間: 2025-3-27 01:32
9樓作者: BAN 時(shí)間: 2025-3-27 08:47
9樓作者: 珊瑚 時(shí)間: 2025-3-27 11:24
9樓作者: Integrate 時(shí)間: 2025-3-27 16:03
9樓作者: 確認(rèn) 時(shí)間: 2025-3-27 17:57
10樓作者: 滑稽 時(shí)間: 2025-3-27 22:57
10樓作者: Lacerate 時(shí)間: 2025-3-28 05:10
10樓作者: BLAND 時(shí)間: 2025-3-28 06:47
10樓