派博傳思國際中心

標(biāo)題: Titlebook: Chebyshev Splines and Kolmogorov Inequalities; Sergey K. Bagdasarov Book 1998 Birkh?user Verlag 1998 Topology.calculus.equation.function.o [打印本頁]

作者: Cyclone    時間: 2025-3-21 17:10
書目名稱Chebyshev Splines and Kolmogorov Inequalities影響因子(影響力)




書目名稱Chebyshev Splines and Kolmogorov Inequalities影響因子(影響力)學(xué)科排名




書目名稱Chebyshev Splines and Kolmogorov Inequalities網(wǎng)絡(luò)公開度




書目名稱Chebyshev Splines and Kolmogorov Inequalities網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Chebyshev Splines and Kolmogorov Inequalities被引頻次




書目名稱Chebyshev Splines and Kolmogorov Inequalities被引頻次學(xué)科排名




書目名稱Chebyshev Splines and Kolmogorov Inequalities年度引用




書目名稱Chebyshev Splines and Kolmogorov Inequalities年度引用學(xué)科排名




書目名稱Chebyshev Splines and Kolmogorov Inequalities讀者反饋




書目名稱Chebyshev Splines and Kolmogorov Inequalities讀者反饋學(xué)科排名





作者: glomeruli    時間: 2025-3-21 22:20
https://doi.org/10.1007/978-3-0348-8808-0Topology; calculus; equation; function; optimization; theorem
作者: GNAW    時間: 2025-3-22 02:05

作者: 笨重    時間: 2025-3-22 08:20

作者: demote    時間: 2025-3-22 11:09

作者: TRACE    時間: 2025-3-22 15:44
https://doi.org/10.1007/978-1-4302-0391-9 < 1, and some interval [0, ..], .. = ..(., ω, ., .). Then, referring to the results of our paper [7] or [8], we describe the Chebyshev ω-splines of the problem (0.0) for arbitrary ω. Finally, we analyze various properties of Chebyshev ω-splines crucial in the construction of extremal functions in the Kolmogorov problem on the half-line ?..
作者: TRACE    時間: 2025-3-22 19:38
Design Patterns: Making CSS Easy!, the problem (0.0) for ω(.) = . by E. Landau [54] in the case . = ?. and J. Hadamard [31] in the case . = ?. A number of other elementary cases of the Kolmogorov-Landau problem for ω(.) = . are discussed by I. J. Schoenberg in [72].
作者: 泛濫    時間: 2025-3-22 21:49
https://doi.org/10.1007/978-1-4302-0391-9points of alternance on the interval [0, 1]. Relying on the Rolle theorem or an application of Fredholm kernels, we give two proofs of extremality of Chebyshev perfect splines of the problem . for all 0 < . ≤ .. Then, we discuss the possibility of application of these two methods to the solution of
作者: 吼叫    時間: 2025-3-23 03:23

作者: shrill    時間: 2025-3-23 09:28
https://doi.org/10.1007/978-1-4302-0391-9 < 1, and some interval [0, ..], .. = ..(., ω, ., .). Then, referring to the results of our paper [7] or [8], we describe the Chebyshev ω-splines of the problem (0.0) for arbitrary ω. Finally, we analyze various properties of Chebyshev ω-splines crucial in the construction of extremal functions in t
作者: Mets552    時間: 2025-3-23 10:57
Design Patterns: Making CSS Easy!, the problem (0.0) for ω(.) = . by E. Landau [54] in the case . = ?. and J. Hadamard [31] in the case . = ?. A number of other elementary cases of the Kolmogorov-Landau problem for ω(.) = . are discussed by I. J. Schoenberg in [72].
作者: 變化    時間: 2025-3-23 17:31
,Properties of Chebyshev Ω-Splines, < 1, and some interval [0, ..], .. = ..(., ω, ., .). Then, referring to the results of our paper [7] or [8], we describe the Chebyshev ω-splines of the problem (0.0) for arbitrary ω. Finally, we analyze various properties of Chebyshev ω-splines crucial in the construction of extremal functions in the Kolmogorov problem on the half-line ?..
作者: 不透明性    時間: 2025-3-23 19:10

作者: 賄賂    時間: 2025-3-24 00:52
Positioning: Indented, Offset, and Aligned,Let . be either the entire line ? or the half-line ?.. Let also ., .,.∈ [1, + ∞), and ., . ∞ ?: . < ..
作者: Daily-Value    時間: 2025-3-24 02:29

作者: Torrid    時間: 2025-3-24 08:07
Pro CSS and HTML Design PatternsOur goal in this chapter is to introduce the reader to the notion of . as extremal functions of .. We also give a comprehensive list of various properties of ω-splines used in our arguments.
作者: 不可接觸    時間: 2025-3-24 10:40

作者: Chemotherapy    時間: 2025-3-24 18:45

作者: 預(yù)示    時間: 2025-3-24 19:22

作者: 咽下    時間: 2025-3-25 01:31

作者: 大量    時間: 2025-3-25 03:53

作者: Friction    時間: 2025-3-25 09:39
BusinessObjects XI SDK Programming II,In this chapter we describe extremal functions and sharp Kolmogorov inequalities in the problem,. for . = 1, 2, and . = ? or ?.. We also give the corresponding optimal numerical differentation formulae for .′(.) and .″(.).
作者: 滑稽    時間: 2025-3-25 11:58

作者: 用肘    時間: 2025-3-25 17:57
Crystal Reports and BusinessObjects XI,The classical Chebyshev polynomial .. of degree . + 1 is given by the formula
作者: Madrigal    時間: 2025-3-25 21:22

作者: 豐滿中國    時間: 2025-3-26 00:30

作者: Project    時間: 2025-3-26 06:08

作者: RALES    時間: 2025-3-26 11:05
Auxiliary Results,As the title suggests, in this chapter we list technical results which we employ in our constructions throughout the book.
作者: Gorilla    時間: 2025-3-26 16:11
,Maximization of Functionals in ,,[a, b] and Perfect Ω-Splines,Our goal in this chapter is to introduce the reader to the notion of . as extremal functions of .. We also give a comprehensive list of various properties of ω-splines used in our arguments.
作者: 排他    時間: 2025-3-26 16:47
Fredholm Kernels,Due to the exceptional role of polynomial spline kernels in generating extremal functions of various extremal functions in ...., we reserved the entire chapter for the presentation of properties of different kinds of ..
作者: lattice    時間: 2025-3-26 22:47
,Additive Kolmogorov—Landau Inequalities,In this chapter we first derive the numerical differentiation formulae of the form . Then we give sufficient conditions of extremality of a function . ∈ ...[0, 1] in the Kolmogorov-Landau inequalities.
作者: 半身雕像    時間: 2025-3-27 01:17

作者: Malleable    時間: 2025-3-27 07:38
,Maximization of Integral Functionals in ,,[,,, ,,], - ∞ ≤ ,, < ,, ≤ +∞,We describe extremal functions and rearrangements of the problem.where .. < 0 < .., and the kernel ψ has a finite number or a countable mono-tonely ordered set of points of sign changes on [.., ..], - ∞ ≤ .. < .. ≤ +∞. In particular, we give the solution of the problem (**) in the case of the entire line [.., ..] = ?.
作者: 實現(xiàn)    時間: 2025-3-27 10:32
,Sharp Kolmogorov Inequalities in ,,,,(?),Let ., .: 0 < m ≤ ., be integers. In this chapter we first describe the discrete family of Chebyshev ω-splines extremal in the problem .for certain choices of . and all concave modulii of continuity ω. Then, we characterize the extremal functions in the problem .for all . > 0 and α ∈ (0,1].
作者: 哺乳動物    時間: 2025-3-27 16:12
,Sharp Kolmogorov-Landau Inequalities in ,,,,(,), , = ? ? ?+,In this chapter we describe extremal functions and sharp Kolmogorov inequalities in the problem,. for . = 1, 2, and . = ? or ?.. We also give the corresponding optimal numerical differentation formulae for .′(.) and .″(.).
作者: ETCH    時間: 2025-3-27 18:29

作者: Intact    時間: 2025-3-27 22:22

作者: FECT    時間: 2025-3-28 05:46

作者: 詳細目錄    時間: 2025-3-28 07:53

作者: nurture    時間: 2025-3-28 11:15
Positioning: Indented, Offset, and Aligned,of the kernel . satisfy equations (5.1.2), (5.1.10) for 0 < m < r, and (5.1.14) for m = r. We give a complete proof of Theorem 6.0.1 and then point out the only distinction between the proofs of Theorems 6.0.1 for 0 < . < . and . = ..
作者: 楓樹    時間: 2025-3-28 16:09

作者: beta-cells    時間: 2025-3-28 19:16
Review of Classical Chebyshev Polynomial Splines,the corresponding problem in ..... In Section 4.5 we discuss the elementary proof of the original exact Kolmogorov inequalities for intermediate derivatives due to A. S. Cavaretta [18]. Finally, we derive some special technical results of the general theory of perfect splines employed in the proof of the main results of the paper.
作者: 不舒服    時間: 2025-3-28 23:27

作者: irreparable    時間: 2025-3-29 06:17

作者: Redundant    時間: 2025-3-29 08:08

作者: Panacea    時間: 2025-3-29 14:50
,Properties of Chebyshev Ω-Splines, < 1, and some interval [0, ..], .. = ..(., ω, ., .). Then, referring to the results of our paper [7] or [8], we describe the Chebyshev ω-splines of the problem (0.0) for arbitrary ω. Finally, we analyze various properties of Chebyshev ω-splines crucial in the construction of extremal functions in t
作者: majestic    時間: 2025-3-29 18:21

作者: 是突襲    時間: 2025-3-29 23:35
8樓
作者: Inflamed    時間: 2025-3-30 01:20
9樓
作者: 晚來的提名    時間: 2025-3-30 06:05
9樓
作者: 盲信者    時間: 2025-3-30 10:31
9樓
作者: Engaging    時間: 2025-3-30 13:34
9樓
作者: nocturnal    時間: 2025-3-30 17:03
10樓
作者: Lime石灰    時間: 2025-3-30 22:18
10樓
作者: cardiopulmonary    時間: 2025-3-31 04:40
10樓
作者: Lucubrate    時間: 2025-3-31 06:18
10樓




歡迎光臨 派博傳思國際中心 (http://www.pjsxioz.cn/) Powered by Discuz! X3.5
左云县| 渭南市| 闽侯县| 彰化市| 肥乡县| 囊谦县| 八宿县| 开江县| 元朗区| 胶南市| 普兰县| 惠州市| 虎林市| 遵化市| 海林市| 普定县| 英吉沙县| 济南市| 孝义市| 泊头市| 凤庆县| 西乌| 莱阳市| 星座| 仪征市| 慈利县| 绥江县| 海林市| 姜堰市| 上杭县| 香格里拉县| 滕州市| 广东省| 长宁县| 柯坪县| 静安区| 漯河市| 宁阳县| 南丰县| 景东| 万源市|