標(biāo)題: Titlebook: Chebyshev Splines and Kolmogorov Inequalities; Sergey K. Bagdasarov Book 1998 Birkh?user Verlag 1998 Topology.calculus.equation.function.o [打印本頁] 作者: Cyclone 時間: 2025-3-21 17:10
書目名稱Chebyshev Splines and Kolmogorov Inequalities影響因子(影響力)
書目名稱Chebyshev Splines and Kolmogorov Inequalities影響因子(影響力)學(xué)科排名
書目名稱Chebyshev Splines and Kolmogorov Inequalities網(wǎng)絡(luò)公開度
書目名稱Chebyshev Splines and Kolmogorov Inequalities網(wǎng)絡(luò)公開度學(xué)科排名
書目名稱Chebyshev Splines and Kolmogorov Inequalities被引頻次
書目名稱Chebyshev Splines and Kolmogorov Inequalities被引頻次學(xué)科排名
書目名稱Chebyshev Splines and Kolmogorov Inequalities年度引用
書目名稱Chebyshev Splines and Kolmogorov Inequalities年度引用學(xué)科排名
書目名稱Chebyshev Splines and Kolmogorov Inequalities讀者反饋
書目名稱Chebyshev Splines and Kolmogorov Inequalities讀者反饋學(xué)科排名
作者: glomeruli 時間: 2025-3-21 22:20
https://doi.org/10.1007/978-3-0348-8808-0Topology; calculus; equation; function; optimization; theorem作者: GNAW 時間: 2025-3-22 02:05 作者: 笨重 時間: 2025-3-22 08:20 作者: demote 時間: 2025-3-22 11:09 作者: TRACE 時間: 2025-3-22 15:44
https://doi.org/10.1007/978-1-4302-0391-9 < 1, and some interval [0, ..], .. = ..(., ω, ., .). Then, referring to the results of our paper [7] or [8], we describe the Chebyshev ω-splines of the problem (0.0) for arbitrary ω. Finally, we analyze various properties of Chebyshev ω-splines crucial in the construction of extremal functions in the Kolmogorov problem on the half-line ?..作者: TRACE 時間: 2025-3-22 19:38
Design Patterns: Making CSS Easy!, the problem (0.0) for ω(.) = . by E. Landau [54] in the case . = ?. and J. Hadamard [31] in the case . = ?. A number of other elementary cases of the Kolmogorov-Landau problem for ω(.) = . are discussed by I. J. Schoenberg in [72].作者: 泛濫 時間: 2025-3-22 21:49
https://doi.org/10.1007/978-1-4302-0391-9points of alternance on the interval [0, 1]. Relying on the Rolle theorem or an application of Fredholm kernels, we give two proofs of extremality of Chebyshev perfect splines of the problem . for all 0 < . ≤ .. Then, we discuss the possibility of application of these two methods to the solution of 作者: 吼叫 時間: 2025-3-23 03:23 作者: shrill 時間: 2025-3-23 09:28
https://doi.org/10.1007/978-1-4302-0391-9 < 1, and some interval [0, ..], .. = ..(., ω, ., .). Then, referring to the results of our paper [7] or [8], we describe the Chebyshev ω-splines of the problem (0.0) for arbitrary ω. Finally, we analyze various properties of Chebyshev ω-splines crucial in the construction of extremal functions in t作者: Mets552 時間: 2025-3-23 10:57
Design Patterns: Making CSS Easy!, the problem (0.0) for ω(.) = . by E. Landau [54] in the case . = ?. and J. Hadamard [31] in the case . = ?. A number of other elementary cases of the Kolmogorov-Landau problem for ω(.) = . are discussed by I. J. Schoenberg in [72].作者: 變化 時間: 2025-3-23 17:31
,Properties of Chebyshev Ω-Splines, < 1, and some interval [0, ..], .. = ..(., ω, ., .). Then, referring to the results of our paper [7] or [8], we describe the Chebyshev ω-splines of the problem (0.0) for arbitrary ω. Finally, we analyze various properties of Chebyshev ω-splines crucial in the construction of extremal functions in the Kolmogorov problem on the half-line ?..作者: 不透明性 時間: 2025-3-23 19:10 作者: 賄賂 時間: 2025-3-24 00:52
Positioning: Indented, Offset, and Aligned,Let . be either the entire line ? or the half-line ?.. Let also ., .,.∈ [1, + ∞), and ., . ∞ ?: . < ..作者: Daily-Value 時間: 2025-3-24 02:29 作者: Torrid 時間: 2025-3-24 08:07
Pro CSS and HTML Design PatternsOur goal in this chapter is to introduce the reader to the notion of . as extremal functions of .. We also give a comprehensive list of various properties of ω-splines used in our arguments.作者: 不可接觸 時間: 2025-3-24 10:40 作者: Chemotherapy 時間: 2025-3-24 18:45 作者: 預(yù)示 時間: 2025-3-24 19:22 作者: 咽下 時間: 2025-3-25 01:31 作者: 大量 時間: 2025-3-25 03:53 作者: Friction 時間: 2025-3-25 09:39
BusinessObjects XI SDK Programming II,In this chapter we describe extremal functions and sharp Kolmogorov inequalities in the problem,. for . = 1, 2, and . = ? or ?.. We also give the corresponding optimal numerical differentation formulae for .′(.) and .″(.).作者: 滑稽 時間: 2025-3-25 11:58 作者: 用肘 時間: 2025-3-25 17:57
Crystal Reports and BusinessObjects XI,The classical Chebyshev polynomial .. of degree . + 1 is given by the formula作者: Madrigal 時間: 2025-3-25 21:22 作者: 豐滿中國 時間: 2025-3-26 00:30 作者: Project 時間: 2025-3-26 06:08 作者: RALES 時間: 2025-3-26 11:05
Auxiliary Results,As the title suggests, in this chapter we list technical results which we employ in our constructions throughout the book.作者: Gorilla 時間: 2025-3-26 16:11
,Maximization of Functionals in ,,[a, b] and Perfect Ω-Splines,Our goal in this chapter is to introduce the reader to the notion of . as extremal functions of .. We also give a comprehensive list of various properties of ω-splines used in our arguments.作者: 排他 時間: 2025-3-26 16:47
Fredholm Kernels,Due to the exceptional role of polynomial spline kernels in generating extremal functions of various extremal functions in ...., we reserved the entire chapter for the presentation of properties of different kinds of ..作者: lattice 時間: 2025-3-26 22:47
,Additive Kolmogorov—Landau Inequalities,In this chapter we first derive the numerical differentiation formulae of the form . Then we give sufficient conditions of extremality of a function . ∈ ...[0, 1] in the Kolmogorov-Landau inequalities.作者: 半身雕像 時間: 2025-3-27 01:17 作者: Malleable 時間: 2025-3-27 07:38
,Maximization of Integral Functionals in ,,[,,, ,,], - ∞ ≤ ,, < ,, ≤ +∞,We describe extremal functions and rearrangements of the problem.where .. < 0 < .., and the kernel ψ has a finite number or a countable mono-tonely ordered set of points of sign changes on [.., ..], - ∞ ≤ .. < .. ≤ +∞. In particular, we give the solution of the problem (**) in the case of the entire line [.., ..] = ?.作者: 實現(xiàn) 時間: 2025-3-27 10:32
,Sharp Kolmogorov Inequalities in ,,,,(?),Let ., .: 0 < m ≤ ., be integers. In this chapter we first describe the discrete family of Chebyshev ω-splines extremal in the problem .for certain choices of . and all concave modulii of continuity ω. Then, we characterize the extremal functions in the problem .for all . > 0 and α ∈ (0,1].作者: 哺乳動物 時間: 2025-3-27 16:12
,Sharp Kolmogorov-Landau Inequalities in ,,,,(,), , = ? ? ?+,In this chapter we describe extremal functions and sharp Kolmogorov inequalities in the problem,. for . = 1, 2, and . = ? or ?.. We also give the corresponding optimal numerical differentation formulae for .′(.) and .″(.).作者: ETCH 時間: 2025-3-27 18:29 作者: Intact 時間: 2025-3-27 22:22 作者: FECT 時間: 2025-3-28 05:46 作者: 詳細目錄 時間: 2025-3-28 07:53 作者: nurture 時間: 2025-3-28 11:15
Positioning: Indented, Offset, and Aligned,of the kernel . satisfy equations (5.1.2), (5.1.10) for 0 < m < r, and (5.1.14) for m = r. We give a complete proof of Theorem 6.0.1 and then point out the only distinction between the proofs of Theorems 6.0.1 for 0 < . < . and . = ..作者: 楓樹 時間: 2025-3-28 16:09 作者: beta-cells 時間: 2025-3-28 19:16
Review of Classical Chebyshev Polynomial Splines,the corresponding problem in ..... In Section 4.5 we discuss the elementary proof of the original exact Kolmogorov inequalities for intermediate derivatives due to A. S. Cavaretta [18]. Finally, we derive some special technical results of the general theory of perfect splines employed in the proof of the main results of the paper.作者: 不舒服 時間: 2025-3-28 23:27 作者: irreparable 時間: 2025-3-29 06:17 作者: Redundant 時間: 2025-3-29 08:08 作者: Panacea 時間: 2025-3-29 14:50
,Properties of Chebyshev Ω-Splines, < 1, and some interval [0, ..], .. = ..(., ω, ., .). Then, referring to the results of our paper [7] or [8], we describe the Chebyshev ω-splines of the problem (0.0) for arbitrary ω. Finally, we analyze various properties of Chebyshev ω-splines crucial in the construction of extremal functions in t作者: majestic 時間: 2025-3-29 18:21 作者: 是突襲 時間: 2025-3-29 23:35
8樓作者: Inflamed 時間: 2025-3-30 01:20
9樓作者: 晚來的提名 時間: 2025-3-30 06:05
9樓作者: 盲信者 時間: 2025-3-30 10:31
9樓作者: Engaging 時間: 2025-3-30 13:34
9樓作者: nocturnal 時間: 2025-3-30 17:03
10樓作者: Lime石灰 時間: 2025-3-30 22:18
10樓作者: cardiopulmonary 時間: 2025-3-31 04:40
10樓作者: Lucubrate 時間: 2025-3-31 06:18
10樓