派博傳思國際中心

標題: Titlebook: Chaos in Discrete Dynamical Systems; A Visual Introductio Ralph H. Abraham,Laura Gardini,Christian Mira Book 1997 Springer Science+Business [打印本頁]

作者: Entangle    時間: 2025-3-21 19:09
書目名稱Chaos in Discrete Dynamical Systems影響因子(影響力)




書目名稱Chaos in Discrete Dynamical Systems影響因子(影響力)學(xué)科排名




書目名稱Chaos in Discrete Dynamical Systems網(wǎng)絡(luò)公開度




書目名稱Chaos in Discrete Dynamical Systems網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Chaos in Discrete Dynamical Systems被引頻次




書目名稱Chaos in Discrete Dynamical Systems被引頻次學(xué)科排名




書目名稱Chaos in Discrete Dynamical Systems年度引用




書目名稱Chaos in Discrete Dynamical Systems年度引用學(xué)科排名




書目名稱Chaos in Discrete Dynamical Systems讀者反饋




書目名稱Chaos in Discrete Dynamical Systems讀者反饋學(xué)科排名





作者: ASSET    時間: 2025-3-21 22:23

作者: Infantry    時間: 2025-3-22 04:29
https://doi.org/10.1007/978-3-662-47224-8rcations, which we have encountered already in Chapter 5, with a sequence of hand drawings. Then we will go on to an exemplary bifurcation sequence with computer graphics, in which the fractal implications of these contact events for the boundaries become clear.
作者: 首創(chuàng)精神    時間: 2025-3-22 08:37
https://doi.org/10.1007/978-3-662-47224-8tractors, basins, critical sets, bifurcations, and so on — may be understood in the 1D context, as we have indicated here and there; but perhaps they are clearer in 2D. Also, the 2D versions may admit a more straightforward generalization to 3D and higher dimensions.
作者: savage    時間: 2025-3-22 08:52

作者: 開始從未    時間: 2025-3-22 15:48

作者: 開始從未    時間: 2025-3-22 18:35

作者: 毛細血管    時間: 2025-3-22 22:50

作者: 2否定    時間: 2025-3-23 03:00
https://doi.org/10.1007/978-3-662-47224-8s ideal) and few mathematical symbols.. We illustrate all the basic ideas with hand drawings and monochrome computer graphics in the book, and again with movies (full-motion video animations in color) on the companion CD-ROM.
作者: Alveoli    時間: 2025-3-23 06:59
M. P. Dobhal,V. Gupta,M. D. Lechner,R. Gupta which is our main concern in this book. We no longer have the convenience of a visible graph of the map, however, because the graph of a 2D map is a 2D surface in a 4D space. Therefore, we must be satisfied with a frontal view of the 2D domain of the map, in which we try to visualize as much as possible.
作者: Intersect    時間: 2025-3-23 12:02
https://doi.org/10.1007/978-3-662-47224-8rcations, which we have encountered already in Chapter 5, with a sequence of hand drawings. Then we will go on to an exemplary bifurcation sequence with computer graphics, in which the fractal implications of these contact events for the boundaries become clear.
作者: FATAL    時間: 2025-3-23 14:59
https://doi.org/10.1007/978-3-662-47224-8tractors, basins, critical sets, bifurcations, and so on — may be understood in the 1D context, as we have indicated here and there; but perhaps they are clearer in 2D. Also, the 2D versions may admit a more straightforward generalization to 3D and higher dimensions.
作者: 和平主義者    時間: 2025-3-23 20:59

作者: wangle    時間: 2025-3-23 23:23

作者: 直覺好    時間: 2025-3-24 06:06
978-1-4612-7347-9Springer Science+Business Media New York 1997
作者: 施魔法    時間: 2025-3-24 08:45
M. P. Dobhal,V. Gupta,M. D. Lechner,R. GuptaIn the preceding chapter we introduced a brief list of basic concepts of discrete dynamics. Here, we expand on these concepts in the one-dimensional context, in which, uniquely, we have the advantage of a simple graphical representation. The official, abstract definitions of all these concepts may be found in the Appendices.
作者: Anguish    時間: 2025-3-24 11:22
M. P. Dobhal,V. Gupta,M. D. Lechner,R. GuptaWe begin with a brief introduction to the concept of absorption in one and two dimensions, and then study an exemplary bifurcation sequence.
作者: GIST    時間: 2025-3-24 15:59
https://doi.org/10.1007/978-3-662-47224-8Chaotic contact bifurcations involve a chaotic attractor. This is the pinnacle of our subject. Here we proceed with a 1D introduction, and a 2D introduction, before analyzing the exemplary bifurcation sequence.
作者: dysphagia    時間: 2025-3-24 22:29

作者: CURB    時間: 2025-3-25 00:06
Absorbing AreasWe begin with a brief introduction to the concept of absorption in one and two dimensions, and then study an exemplary bifurcation sequence.
作者: Constant    時間: 2025-3-25 04:26
Chaotic Contact BifurcationsChaotic contact bifurcations involve a chaotic attractor. This is the pinnacle of our subject. Here we proceed with a 1D introduction, and a 2D introduction, before analyzing the exemplary bifurcation sequence.
作者: 可以任性    時間: 2025-3-25 08:05

作者: 話    時間: 2025-3-25 14:27

作者: 小步走路    時間: 2025-3-25 19:19
Fractal Boundariesrcations, which we have encountered already in Chapter 5, with a sequence of hand drawings. Then we will go on to an exemplary bifurcation sequence with computer graphics, in which the fractal implications of these contact events for the boundaries become clear.
作者: 蟄伏    時間: 2025-3-25 21:16
Conclusiontractors, basins, critical sets, bifurcations, and so on — may be understood in the 1D context, as we have indicated here and there; but perhaps they are clearer in 2D. Also, the 2D versions may admit a more straightforward generalization to 3D and higher dimensions.
作者: 陰險    時間: 2025-3-26 00:57
Book 1997 books by Heinz-Otto Peigen and his co-workers. Now, the new theory of critical curves developed byMira and his students and Toulouse provide a unique opportunity to explain the basic concepts of the theory of chaos and bifurcations for discete dynamical systems in two-dimensions. The materials in t
作者: 哥哥噴涌而出    時間: 2025-3-26 07:01

作者: 抱狗不敢前    時間: 2025-3-26 12:00
Book 1997systems), cascades (discrete, reversible, dynamical systems), and semi-cascades (discrete, irreversible, dynamical systems). Flows and semi-cascades are the classical systems iuntroduced by Poincare a centry ago, and are the subject of the extensively illustrated book: "Dynamics: The Geometry of Beh
作者: Repatriate    時間: 2025-3-26 14:17

作者: Entrancing    時間: 2025-3-26 20:51
8樓
作者: 團結(jié)    時間: 2025-3-26 23:24
8樓
作者: 發(fā)怨言    時間: 2025-3-27 01:13
8樓
作者: DEVIL    時間: 2025-3-27 06:09
9樓
作者: 濃縮    時間: 2025-3-27 13:04
9樓
作者: 正式演說    時間: 2025-3-27 13:44
9樓
作者: WATER    時間: 2025-3-27 19:59
9樓
作者: 偽造    時間: 2025-3-27 22:54
10樓
作者: pessimism    時間: 2025-3-28 03:02
10樓
作者: WATER    時間: 2025-3-28 08:34
10樓
作者: Schlemms-Canal    時間: 2025-3-28 14:27
10樓




歡迎光臨 派博傳思國際中心 (http://www.pjsxioz.cn/) Powered by Discuz! X3.5
墨脱县| 新昌县| 盱眙县| 江永县| 社会| 河西区| 高雄市| 庆云县| 沧州市| 余干县| 永福县| 田林县| 云浮市| 铜陵市| 芮城县| 连城县| 长沙市| 平山县| 从江县| 九江县| 胶南市| 长海县| 加查县| 弋阳县| 开平市| 康定县| 炎陵县| 洛阳市| 延寿县| 钦州市| 天水市| 岳西县| 洛浦县| 紫金县| 霞浦县| 吉木乃县| 阿瓦提县| 苗栗县| 闽清县| 黑龙江省| 儋州市|