派博傳思國際中心

標(biāo)題: Titlebook: Chain Conditions in Commutative Rings; Ali Benhissi Textbook 2022 The Editor(s) (if applicable) and The Author(s), under exclusive license [打印本頁]

作者: 極大    時間: 2025-3-21 17:07
書目名稱Chain Conditions in Commutative Rings影響因子(影響力)




書目名稱Chain Conditions in Commutative Rings影響因子(影響力)學(xué)科排名




書目名稱Chain Conditions in Commutative Rings網(wǎng)絡(luò)公開度




書目名稱Chain Conditions in Commutative Rings網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Chain Conditions in Commutative Rings被引頻次




書目名稱Chain Conditions in Commutative Rings被引頻次學(xué)科排名




書目名稱Chain Conditions in Commutative Rings年度引用




書目名稱Chain Conditions in Commutative Rings年度引用學(xué)科排名




書目名稱Chain Conditions in Commutative Rings讀者反饋




書目名稱Chain Conditions in Commutative Rings讀者反饋學(xué)科排名





作者: Concerto    時間: 2025-3-21 22:39
http://image.papertrans.cn/c/image/223379.jpg
作者: Encapsulate    時間: 2025-3-22 01:43
https://doi.org/10.1007/978-3-031-09898-7S-Noetherian; S-Artinian; Nonnil-Noetherian; Strongly Hopfian; polynomials; power series; almost principal
作者: 鈍劍    時間: 2025-3-22 05:53
978-3-031-10147-2The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
作者: dragon    時間: 2025-3-22 10:38
Tables 23 - 32, Figs. 90 - 114,ed in many areas including commutative algebra and algebraic geometry. The Noetherian property was originally due to the mathematician Noether who first considered a relation between the ascending chain condition on ideals and the finitely generatedness of ideals.
作者: FIN    時間: 2025-3-22 13:07
Tables 23 - 32, Figs. 90 - 114,domorphism . of ., the sequence . .???. ..??… is stationary. The ring . is strongly Hopfian if it is strongly Hopfian as an .-module. This is also equivalent to the fact that for each .?∈?., the sequence .(.)???.(..)??… is stationary. In this chapter, we study this notion and its transfer to differe
作者: FIN    時間: 2025-3-22 20:47

作者: 沖突    時間: 2025-3-23 00:29

作者: Nucleate    時間: 2025-3-23 03:37
Tables 23 - 32, Figs. 90 - 114,In this chapter, all the rings considered are commutative with unity. A multiplicative set contains 1 and does not contain 0.
作者: PAD416    時間: 2025-3-23 09:29
1.0.3 List of symbols and abbreviations,Let . be an integral domain. In this chapter, we define a notion of almost principal for the domain .[.]. Then we characterize those . with this property. All the rings considered in this chapter are commutative with identity.
作者: intellect    時間: 2025-3-23 12:26

作者: ALLEY    時間: 2025-3-23 17:23

作者: 隨意    時間: 2025-3-23 21:27

作者: 吵鬧    時間: 2025-3-24 00:14

作者: phase-2-enzyme    時間: 2025-3-24 06:22

作者: 滋養(yǎng)    時間: 2025-3-24 06:57
Strongly Hopfian, Endo-Noetherian, and Isonoetherian Rings,domorphism . of ., the sequence . .???. ..??… is stationary. The ring . is strongly Hopfian if it is strongly Hopfian as an .-module. This is also equivalent to the fact that for each .?∈?., the sequence .(.)???.(..)??… is stationary. In this chapter, we study this notion and its transfer to different extensions of a ring ..
作者: 淘氣    時間: 2025-3-24 11:12
Textbook 2022papers. The majority of chapters are self-contained, and all include detailed proofs, a wealth of examples and solved exercises, and a complete reference list. The topics covered include S-Noetherian, S-Artinian, Nonnil-Noetherian, and Strongly Hopfian properties on commutative rings and their trans
作者: 嚴(yán)峻考驗    時間: 2025-3-24 17:34
Textbook 2022fer to extensions such as polynomial and power series rings, and more. Though primarily intended for readers with a background in commutative rings, modules, polynomials and power series extension rings, the book can also be used as a reference guide to support graduate-level algebra courses, or as a starting point for further research.
作者: irreducible    時間: 2025-3-24 22:18

作者: Offset    時間: 2025-3-25 01:48

作者: REP    時間: 2025-3-25 05:26

作者: 毀壞    時間: 2025-3-25 09:05

作者: 競選運動    時間: 2025-3-25 14:41
7樓
作者: 真    時間: 2025-3-25 17:43
7樓
作者: 信任    時間: 2025-3-25 22:55
7樓
作者: 叢林    時間: 2025-3-26 00:31
8樓
作者: geriatrician    時間: 2025-3-26 04:30
8樓
作者: 強(qiáng)制性    時間: 2025-3-26 10:51
8樓
作者: 削減    時間: 2025-3-26 13:36
9樓
作者: Lime石灰    時間: 2025-3-26 17:21
9樓
作者: 拾落穗    時間: 2025-3-27 00:37
9樓
作者: 同謀    時間: 2025-3-27 01:35
9樓
作者: CAGE    時間: 2025-3-27 08:09
10樓
作者: CERE    時間: 2025-3-27 13:12
10樓
作者: LARK    時間: 2025-3-27 15:08
10樓
作者: 險代理人    時間: 2025-3-27 18:05
10樓




歡迎光臨 派博傳思國際中心 (http://www.pjsxioz.cn/) Powered by Discuz! X3.5
湛江市| 隆化县| 海安县| 万山特区| 祁阳县| 怀远县| 会理县| 特克斯县| 达州市| 静宁县| 平凉市| 桐柏县| 中牟县| 广昌县| 克什克腾旗| 银川市| 黔江区| 杭州市| 阳城县| 黄龙县| 炎陵县| 秦皇岛市| 措勤县| 郑州市| 德江县| 平乡县| 通城县| 玉田县| 光山县| 华阴市| 明水县| 宝应县| 德化县| 屯昌县| 新源县| 灵寿县| 泰顺县| 石林| 舒兰市| 大石桥市| 繁峙县|