標(biāo)題: Titlebook: Chain Conditions in Commutative Rings; Ali Benhissi Textbook 2022 The Editor(s) (if applicable) and The Author(s), under exclusive license [打印本頁] 作者: 極大 時間: 2025-3-21 17:07
書目名稱Chain Conditions in Commutative Rings影響因子(影響力)
書目名稱Chain Conditions in Commutative Rings影響因子(影響力)學(xué)科排名
書目名稱Chain Conditions in Commutative Rings網(wǎng)絡(luò)公開度
書目名稱Chain Conditions in Commutative Rings網(wǎng)絡(luò)公開度學(xué)科排名
書目名稱Chain Conditions in Commutative Rings被引頻次
書目名稱Chain Conditions in Commutative Rings被引頻次學(xué)科排名
書目名稱Chain Conditions in Commutative Rings年度引用
書目名稱Chain Conditions in Commutative Rings年度引用學(xué)科排名
書目名稱Chain Conditions in Commutative Rings讀者反饋
書目名稱Chain Conditions in Commutative Rings讀者反饋學(xué)科排名
作者: Concerto 時間: 2025-3-21 22:39
http://image.papertrans.cn/c/image/223379.jpg作者: Encapsulate 時間: 2025-3-22 01:43
https://doi.org/10.1007/978-3-031-09898-7S-Noetherian; S-Artinian; Nonnil-Noetherian; Strongly Hopfian; polynomials; power series; almost principal作者: 鈍劍 時間: 2025-3-22 05:53
978-3-031-10147-2The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl作者: dragon 時間: 2025-3-22 10:38
Tables 23 - 32, Figs. 90 - 114,ed in many areas including commutative algebra and algebraic geometry. The Noetherian property was originally due to the mathematician Noether who first considered a relation between the ascending chain condition on ideals and the finitely generatedness of ideals.作者: FIN 時間: 2025-3-22 13:07
Tables 23 - 32, Figs. 90 - 114,domorphism . of ., the sequence . .???. ..??… is stationary. The ring . is strongly Hopfian if it is strongly Hopfian as an .-module. This is also equivalent to the fact that for each .?∈?., the sequence .(.)???.(..)??… is stationary. In this chapter, we study this notion and its transfer to differe作者: FIN 時間: 2025-3-22 20:47 作者: 沖突 時間: 2025-3-23 00:29 作者: Nucleate 時間: 2025-3-23 03:37
Tables 23 - 32, Figs. 90 - 114,In this chapter, all the rings considered are commutative with unity. A multiplicative set contains 1 and does not contain 0.作者: PAD416 時間: 2025-3-23 09:29
1.0.3 List of symbols and abbreviations,Let . be an integral domain. In this chapter, we define a notion of almost principal for the domain .[.]. Then we characterize those . with this property. All the rings considered in this chapter are commutative with identity.作者: intellect 時間: 2025-3-23 12:26 作者: ALLEY 時間: 2025-3-23 17:23 作者: 隨意 時間: 2025-3-23 21:27 作者: 吵鬧 時間: 2025-3-24 00:14 作者: phase-2-enzyme 時間: 2025-3-24 06:22 作者: 滋養(yǎng) 時間: 2025-3-24 06:57
Strongly Hopfian, Endo-Noetherian, and Isonoetherian Rings,domorphism . of ., the sequence . .???. ..??… is stationary. The ring . is strongly Hopfian if it is strongly Hopfian as an .-module. This is also equivalent to the fact that for each .?∈?., the sequence .(.)???.(..)??… is stationary. In this chapter, we study this notion and its transfer to different extensions of a ring ..作者: 淘氣 時間: 2025-3-24 11:12
Textbook 2022papers. The majority of chapters are self-contained, and all include detailed proofs, a wealth of examples and solved exercises, and a complete reference list. The topics covered include S-Noetherian, S-Artinian, Nonnil-Noetherian, and Strongly Hopfian properties on commutative rings and their trans作者: 嚴(yán)峻考驗 時間: 2025-3-24 17:34
Textbook 2022fer to extensions such as polynomial and power series rings, and more. Though primarily intended for readers with a background in commutative rings, modules, polynomials and power series extension rings, the book can also be used as a reference guide to support graduate-level algebra courses, or as a starting point for further research.作者: irreducible 時間: 2025-3-24 22:18 作者: Offset 時間: 2025-3-25 01:48 作者: REP 時間: 2025-3-25 05:26 作者: 毀壞 時間: 2025-3-25 09:05 作者: 競選運動 時間: 2025-3-25 14:41
7樓作者: 真 時間: 2025-3-25 17:43
7樓作者: 信任 時間: 2025-3-25 22:55
7樓作者: 叢林 時間: 2025-3-26 00:31
8樓作者: geriatrician 時間: 2025-3-26 04:30
8樓作者: 強(qiáng)制性 時間: 2025-3-26 10:51
8樓作者: 削減 時間: 2025-3-26 13:36
9樓作者: Lime石灰 時間: 2025-3-26 17:21
9樓作者: 拾落穗 時間: 2025-3-27 00:37
9樓作者: 同謀 時間: 2025-3-27 01:35
9樓作者: CAGE 時間: 2025-3-27 08:09
10樓作者: CERE 時間: 2025-3-27 13:12
10樓作者: LARK 時間: 2025-3-27 15:08
10樓作者: 險代理人 時間: 2025-3-27 18:05
10樓