派博傳思國際中心

標(biāo)題: Titlebook: Canonical Metrics in K?hler Geometry; Gang Tian Book 2000 Birkh?user Verlag 2000 Differential geometry.K?hler geometry.curvature.geometry. [打印本頁]

作者: 短暫    時(shí)間: 2025-3-21 19:50
書目名稱Canonical Metrics in K?hler Geometry影響因子(影響力)




書目名稱Canonical Metrics in K?hler Geometry影響因子(影響力)學(xué)科排名




書目名稱Canonical Metrics in K?hler Geometry網(wǎng)絡(luò)公開度




書目名稱Canonical Metrics in K?hler Geometry網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Canonical Metrics in K?hler Geometry被引頻次




書目名稱Canonical Metrics in K?hler Geometry被引頻次學(xué)科排名




書目名稱Canonical Metrics in K?hler Geometry年度引用




書目名稱Canonical Metrics in K?hler Geometry年度引用學(xué)科排名




書目名稱Canonical Metrics in K?hler Geometry讀者反饋




書目名稱Canonical Metrics in K?hler Geometry讀者反饋學(xué)科排名





作者: 腐蝕    時(shí)間: 2025-3-21 23:03

作者: 豪華    時(shí)間: 2025-3-22 04:04

作者: mediocrity    時(shí)間: 2025-3-22 05:19
Djordje Dihovicni,Milan Mi??evi?. ∈ .. In local coordinates x.,…, ., one has a natural local basis . for ., then . is represented by a smooth matrix-valued function {g.}, for ., then . is represented by a smooth matrix-valued function {.}, where ..
作者: 哥哥噴涌而出    時(shí)間: 2025-3-22 11:31
https://doi.org/10.1007/b102009 consists of all left-invariant vector fields on .. Then any . ∈ . induces a one-parameter subgroup {?.} of .. Since . acts on ., ? . induces a vector field . on .. It is well known that there exists a map ., called moment map, . : .→ .*, satisfying
作者: oxidize    時(shí)間: 2025-3-22 16:03
Areas Related to Enzyme Catalysis, class [ω] ∈ . (., ?) ∩ . (., ?) on a compact K?hler manifold . and any form Ω representing the first Chern class, can we find a metric ω ∈ [ω] such that Ric(ω) = Ω? This is known as the Calabi conjecture and it was solved by Yau in 1976. We will state it here as a theorem and refer to it as the Cal
作者: oxidize    時(shí)間: 2025-3-22 18:18
Overview: 978-3-7643-6194-5978-3-0348-8389-4
作者: Coordinate    時(shí)間: 2025-3-22 22:55
Djordje Dihovicni,Milan Mi??evi?. ∈ .. In local coordinates x.,…, ., one has a natural local basis . for ., then . is represented by a smooth matrix-valued function {g.}, for ., then . is represented by a smooth matrix-valued function {.}, where ..
作者: 抱狗不敢前    時(shí)間: 2025-3-23 02:13

作者: Medicaid    時(shí)間: 2025-3-23 06:02
Areas Related to Enzyme Catalysis, class [ω] ∈ . (., ?) ∩ . (., ?) on a compact K?hler manifold . and any form Ω representing the first Chern class, can we find a metric ω ∈ [ω] such that Ric(ω) = Ω? This is known as the Calabi conjecture and it was solved by Yau in 1976. We will state it here as a theorem and refer to it as the Calabi-Yau Theorem.
作者: Obituary    時(shí)間: 2025-3-23 11:35

作者: 存心    時(shí)間: 2025-3-23 17:14
https://doi.org/10.1007/978-3-0348-8389-4Differential geometry; K?hler geometry; curvature; geometry; manifold; partial differential equation; part
作者: 起波瀾    時(shí)間: 2025-3-23 21:24
978-3-7643-6194-5Birkh?user Verlag 2000
作者: crockery    時(shí)間: 2025-3-23 23:26
Areas Related to Enzyme Catalysis,In this section, we introduce the Calabi functional on the space of K?hler metrics. We will start with a simple lemma.
作者: impaction    時(shí)間: 2025-3-24 05:36

作者: 恩惠    時(shí)間: 2025-3-24 10:29
Mechanisms of Enzymatic Reactions,In this chapter, we will study K?hler-Einstein manifolds of positive scalar curvature.
作者: 無彈性    時(shí)間: 2025-3-24 12:05
https://doi.org/10.1007/b102009In this chapter, we will discuss some applications of theorems in previous chapters. We will also give some generalizations of previous results.
作者: 抱負(fù)    時(shí)間: 2025-3-24 16:26
,Extremal K?hler metrics,In this section, we introduce the Calabi functional on the space of K?hler metrics. We will start with a simple lemma.
作者: construct    時(shí)間: 2025-3-24 22:10

作者: 浸軟    時(shí)間: 2025-3-25 02:36
,K?hler-Einstein metrics with positive scalar curvature,In this chapter, we will study K?hler-Einstein manifolds of positive scalar curvature.
作者: 自負(fù)的人    時(shí)間: 2025-3-25 05:07
Applications and generalizations,In this chapter, we will discuss some applications of theorems in previous chapters. We will also give some generalizations of previous results.
作者: JIBE    時(shí)間: 2025-3-25 08:01

作者: 贊美者    時(shí)間: 2025-3-25 12:32

作者: 鳥籠    時(shí)間: 2025-3-25 19:47

作者: 無力更進(jìn)    時(shí)間: 2025-3-25 22:10
6樓
作者: GUMP    時(shí)間: 2025-3-26 00:34
6樓
作者: headlong    時(shí)間: 2025-3-26 06:38
7樓
作者: 眼界    時(shí)間: 2025-3-26 09:58
7樓
作者: 障礙    時(shí)間: 2025-3-26 14:13
7樓
作者: 同時(shí)發(fā)生    時(shí)間: 2025-3-26 20:42
7樓
作者: Tinea-Capitis    時(shí)間: 2025-3-26 22:13
8樓
作者: 雪上輕舟飛過    時(shí)間: 2025-3-27 03:28
8樓
作者: nominal    時(shí)間: 2025-3-27 09:07
8樓
作者: 抑制    時(shí)間: 2025-3-27 12:30
9樓
作者: 寡頭政治    時(shí)間: 2025-3-27 15:42
9樓
作者: 傳染    時(shí)間: 2025-3-27 20:26
9樓
作者: nutrition    時(shí)間: 2025-3-27 23:05
9樓
作者: exclamation    時(shí)間: 2025-3-28 04:04
10樓
作者: 進(jìn)步    時(shí)間: 2025-3-28 06:59
10樓
作者: GRILL    時(shí)間: 2025-3-28 12:14
10樓
作者: 遠(yuǎn)足    時(shí)間: 2025-3-28 18:13
10樓




歡迎光臨 派博傳思國際中心 (http://www.pjsxioz.cn/) Powered by Discuz! X3.5
南丰县| 桦甸市| 全州县| 高淳县| 佛教| 陆丰市| 临城县| 建瓯市| 延长县| 寻甸| 平定县| 同江市| 三明市| 永城市| 清丰县| 芦溪县| 沛县| 高平市| 乐至县| 南丰县| 宁陕县| 神农架林区| 星子县| 城市| 华容县| 新营市| 澄城县| 新密市| 鸡泽县| 龙江县| 堆龙德庆县| 孟连| 麻阳| 奈曼旗| 叙永县| 治多县| 秦安县| 东光县| 南皮县| 健康| 古蔺县|