標題: Titlebook: Calculus of Variations II; Mariano Giaquinta,Stefan Hildebrandt Book 2004 Springer-Verlag Berlin Heidelberg 2004 Calculus of Variations.Co [打印本頁] 作者: Baleful 時間: 2025-3-21 18:49
書目名稱Calculus of Variations II影響因子(影響力)
書目名稱Calculus of Variations II影響因子(影響力)學科排名
書目名稱Calculus of Variations II網(wǎng)絡(luò)公開度
書目名稱Calculus of Variations II網(wǎng)絡(luò)公開度學科排名
書目名稱Calculus of Variations II被引頻次
書目名稱Calculus of Variations II被引頻次學科排名
書目名稱Calculus of Variations II年度引用
書目名稱Calculus of Variations II年度引用學科排名
書目名稱Calculus of Variations II讀者反饋
書目名稱Calculus of Variations II讀者反饋學科排名
作者: Euphonious 時間: 2025-3-21 20:34
Studies in Computational Intelligencef first order and to Lie’s theory of contact transformations. Nevertheless the results presented here are closely related to the rest of the book, in particular to field theory (Chapter 6) and to Hamilton—Jacobi theory (Chapter 9).作者: 混合 時間: 2025-3-22 03:18 作者: LAIR 時間: 2025-3-22 07:33 作者: infantile 時間: 2025-3-22 12:13
https://doi.org/10.1007/978-3-662-06201-2Calculus of Variations; Convexity; Hamiltonian Formalism; Lagrangian Formalism; differential equation作者: 向下五度才偏 時間: 2025-3-22 14:31
978-3-642-08192-7Springer-Verlag Berlin Heidelberg 2004作者: 向下五度才偏 時間: 2025-3-22 20:24
Huajin Tang,Kay Chen Tan,Zhang Yiations to the canonical formalism of Hamilton—Jacobi, which in some sense is the dual picture of the first. The . transforming one formalism into the other is the so-called . derived from the Lagrangian . of the variational problem that we are to consider. This transformation yields a global diffeom作者: 斜谷 時間: 2025-3-22 23:46
Studies in Computational Intelligencels of the form., whose integrand .(.)is positively homogeneous of first degree with respect to .. Such integrals are invariant with respect to transformations of the parameter ., and therefore they play an important role in geometry. A very important example of integrals of the type (1) is furnished作者: Morbid 時間: 2025-3-23 02:53 作者: PET-scan 時間: 2025-3-23 07:59 作者: 集合 時間: 2025-3-23 09:46
Book 2004s with the for- mal apparatus of the variational calculus and with nonparametric field theory, whereas Volume 2 treats parametric variational problems as weIl as Hamilton- Jacobi theory and the classical theory of partial differential equations of first order. In a subsequent treatise we shall descr作者: Flatus 時間: 2025-3-23 16:14 作者: 繁殖 時間: 2025-3-23 21:21
0072-7830 ume 1 deals with the for- mal apparatus of the variational calculus and with nonparametric field theory, whereas Volume 2 treats parametric variational problems as weIl as Hamilton- Jacobi theory and the classical theory of partial differential equations of first order. In a subsequent treatise we s作者: Promotion 時間: 2025-3-24 02:09
Huajin Tang,Kay Chen Tan,Zhang Yiother is the so-called . derived from the Lagrangian . of the variational problem that we are to consider. This transformation yields a global diffeomorphism and is therefore particularly powerful if .(.) is elliptic (i.e. uniformly convex) with respect to .. Thus the central themes of this chapter are . and ..作者: colloquial 時間: 2025-3-24 03:58 作者: 拍下盜公款 時間: 2025-3-24 10:03 作者: 情感 時間: 2025-3-24 12:25 作者: 陪審團每個人 時間: 2025-3-24 15:45 作者: Pastry 時間: 2025-3-24 19:03 作者: 加強防衛(wèi) 時間: 2025-3-25 00:39 作者: figure 時間: 2025-3-25 04:31
Legendre Transformation, Hamiltonian Systems, Convexity, Field Theoriesations to the canonical formalism of Hamilton—Jacobi, which in some sense is the dual picture of the first. The . transforming one formalism into the other is the so-called . derived from the Lagrangian . of the variational problem that we are to consider. This transformation yields a global diffeom作者: Ophthalmologist 時間: 2025-3-25 08:34
Parametric Variational Integralsls of the form., whose integrand .(.)is positively homogeneous of first degree with respect to .. Such integrals are invariant with respect to transformations of the parameter ., and therefore they play an important role in geometry. A very important example of integrals of the type (1) is furnished作者: Anal-Canal 時間: 2025-3-25 14:54
Hamilton-Jacobi Theory and Canonical Transformations role in the development of the mathematical foundations of quantum mechanics as well as in the genesis of an analysis on manifolds. This theory is not only based on the fundamental work of Hamilton and Jacobi, but it also incorporates ideas of predecessors such as Fermat, Newton, Huygens and Johann作者: 壓倒性勝利 時間: 2025-3-25 16:43
Partial Differential Equations of First Order and Contact Transformationsf first order and to Lie’s theory of contact transformations. Nevertheless the results presented here are closely related to the rest of the book, in particular to field theory (Chapter 6) and to Hamilton—Jacobi theory (Chapter 9).作者: Constant 時間: 2025-3-25 20:49
7樓作者: faultfinder 時間: 2025-3-26 00:58
8樓作者: opalescence 時間: 2025-3-26 04:39
8樓作者: Bucket 時間: 2025-3-26 11:11
8樓作者: transient-pain 時間: 2025-3-26 14:42
9樓作者: delta-waves 時間: 2025-3-26 17:16
9樓作者: 漸變 時間: 2025-3-26 21:42
9樓作者: 虛弱的神經(jīng) 時間: 2025-3-27 02:07
9樓作者: conceal 時間: 2025-3-27 05:49
10樓作者: 紡織品 時間: 2025-3-27 13:30
10樓作者: Expand 時間: 2025-3-27 17:20
10樓作者: MAPLE 時間: 2025-3-27 19:10
10樓