標(biāo)題: Titlebook: Built-in Fault-Tolerant Computing Paradigm for Resilient Large-Scale Chip Design; A Self-Test, Self-Di Xiaowei Li,Guihai Yan,Cheng Liu Book [打印本頁(yè)] 作者: 撒謊 時(shí)間: 2025-3-21 18:56
書(shū)目名稱Built-in Fault-Tolerant Computing Paradigm for Resilient Large-Scale Chip Design影響因子(影響力)
書(shū)目名稱Built-in Fault-Tolerant Computing Paradigm for Resilient Large-Scale Chip Design影響因子(影響力)學(xué)科排名
書(shū)目名稱Built-in Fault-Tolerant Computing Paradigm for Resilient Large-Scale Chip Design網(wǎng)絡(luò)公開(kāi)度
書(shū)目名稱Built-in Fault-Tolerant Computing Paradigm for Resilient Large-Scale Chip Design網(wǎng)絡(luò)公開(kāi)度學(xué)科排名
書(shū)目名稱Built-in Fault-Tolerant Computing Paradigm for Resilient Large-Scale Chip Design被引頻次
書(shū)目名稱Built-in Fault-Tolerant Computing Paradigm for Resilient Large-Scale Chip Design被引頻次學(xué)科排名
書(shū)目名稱Built-in Fault-Tolerant Computing Paradigm for Resilient Large-Scale Chip Design年度引用
書(shū)目名稱Built-in Fault-Tolerant Computing Paradigm for Resilient Large-Scale Chip Design年度引用學(xué)科排名
書(shū)目名稱Built-in Fault-Tolerant Computing Paradigm for Resilient Large-Scale Chip Design讀者反饋
書(shū)目名稱Built-in Fault-Tolerant Computing Paradigm for Resilient Large-Scale Chip Design讀者反饋學(xué)科排名
作者: 凹槽 時(shí)間: 2025-3-21 21:13 作者: sphincter 時(shí)間: 2025-3-22 03:05 作者: 古董 時(shí)間: 2025-3-22 06:06
Fault-Tolerant Network-On-Chip,ince a single routing node failure in NoC can destroy the connectivity of the entire manycore system, NoC is of essential importance to the manycore system. To improve the reliability of NoCs, we investigate fault-tolerant design approaches from different angles including fault-tolerant NoC architec作者: 縮影 時(shí)間: 2025-3-22 10:38
Fault-Tolerant Deep Learning Processors,edundancy design approaches typically have each homogeneous redundant processing element (PE) to mitigate faulty PEs for a limited region of the 2-D computing array rather than the entire computing array to avoid the excessive hardware overhead. However, they fail to recover the computing array when作者: Flagging 時(shí)間: 2025-3-22 13:17 作者: 清真寺 時(shí)間: 2025-3-22 19:00 作者: Pert敏捷 時(shí)間: 2025-3-22 23:38 作者: Aspirin 時(shí)間: 2025-3-23 02:21 作者: 記成螞蟻 時(shí)間: 2025-3-23 07:37 作者: 令人發(fā)膩 時(shí)間: 2025-3-23 10:04 作者: 同時(shí)發(fā)生 時(shí)間: 2025-3-23 13:56
http://image.papertrans.cn/b/image/191905.jpg作者: 裝飾 時(shí)間: 2025-3-23 20:41
https://doi.org/10.1007/978-981-19-8551-5Built-in Fault-tolerance; On-chip Fault-tolerance; Self-test, Self-diagnosis, and Self-repair; Fault-to作者: 連系 時(shí)間: 2025-3-23 22:28 作者: 友好 時(shí)間: 2025-3-24 02:21 作者: 治愈 時(shí)間: 2025-3-24 07:47
erant solution that enables self-test, self-diagnosis and seWith the end of Dennard scaling and Moore’s law, IC chips, especially large-scale ones, now face more reliability challenges, and reliability has become one of the mainstay merits of VLSI designs. In this context, this book presents a built作者: 者變 時(shí)間: 2025-3-24 11:47
onlyoffers a powerful backbone for various on-chip fault-tolerant designs and implementations, but also has farther-reaching implications such as maintaining graceful performance degradation, mitigating the imp978-981-19-8553-9978-981-19-8551-5作者: originality 時(shí)間: 2025-3-24 18:11
Built-in Fault-Tolerant Computing Paradigm for Resilient Large-Scale Chip DesignA Self-Test, Self-Di作者: 下級(jí) 時(shí)間: 2025-3-24 22:43
Built-in Fault-Tolerant Computing Paradigm for Resilient Large-Scale Chip Design978-981-19-8551-5作者: Barter 時(shí)間: 2025-3-25 03:13
Wahrscheinlichkeitsverteilungen, Usually, it integrates techniques such as fault detection, fault diagnosis, and fault recovery in chip design such that it can work independently without additional offline testing equipments. In this chapter, we will introduce the background of various silicon faults first and then elaborate the g作者: 安撫 時(shí)間: 2025-3-25 07:17 作者: 玷污 時(shí)間: 2025-3-25 11:16 作者: 使?jié)M足 時(shí)間: 2025-3-25 12:46
,Einführung in die Funktionentheorie, also propose Row Rippling Column Stealing-guided Simulated Annealing algorithm to determine the optimized virtual topology without affecting high-level parallel applications on the manycore system. From the perspective of fault-tolerant routing, we propose ZoneDefense routing that helps to find the作者: 樸素 時(shí)間: 2025-3-25 17:47
Taylorreihe und Potenzreihenentwicklung,locations. HyCA shows significantly higher reliability, scalability, and performance with less chip area penalty when compared to the conventional redundancy approaches. To further optimize the reliability of DLA, we focus on improve the reliability of Resistive Random Access Memory (ReRAM), which h作者: Paraplegia 時(shí)間: 2025-3-25 20:18
Book 2023 by aging, process variations, or radical particles. Moreover, we demonstrate that 3S not onlyoffers a powerful backbone for various on-chip fault-tolerant designs and implementations, but also has farther-reaching implications such as maintaining graceful performance degradation, mitigating the imp作者: indemnify 時(shí)間: 2025-3-26 01:20
Introduction, Usually, it integrates techniques such as fault detection, fault diagnosis, and fault recovery in chip design such that it can work independently without additional offline testing equipments. In this chapter, we will introduce the background of various silicon faults first and then elaborate the g作者: 相容 時(shí)間: 2025-3-26 07:25
Fault-Tolerant Circuits, VLSI chips. Furthermore, to help to reduce hardware overheads and delay measurement time for on-chip path delay measurement, we propose a novel on-chip path delay measurement architecture, OCDM, for path delay testing and silicon debug. Since paramount challenges come from a variety of aging mechan作者: 輕浮女 時(shí)間: 2025-3-26 09:11 作者: 感激小女 時(shí)間: 2025-3-26 16:11 作者: AFFIX 時(shí)間: 2025-3-26 17:50
Fault-Tolerant Deep Learning Processors,locations. HyCA shows significantly higher reliability, scalability, and performance with less chip area penalty when compared to the conventional redundancy approaches. To further optimize the reliability of DLA, we focus on improve the reliability of Resistive Random Access Memory (ReRAM), which h作者: 傲慢物 時(shí)間: 2025-3-26 23:55
9樓作者: 轎車 時(shí)間: 2025-3-27 05:02
9樓作者: Evacuate 時(shí)間: 2025-3-27 08:48
10樓作者: 機(jī)制 時(shí)間: 2025-3-27 12:06
10樓作者: malign 時(shí)間: 2025-3-27 14:24
10樓作者: IRK 時(shí)間: 2025-3-27 19:30
10樓