派博傳思國(guó)際中心

標(biāo)題: Titlebook: Bringing Machine Learning to Software-Defined Networks; Zehua Guo Book 2022 The Author(s), under exclusive license to Springer Nature Sing [打印本頁(yè)]

作者: 涌出    時(shí)間: 2025-3-21 17:06
書(shū)目名稱(chēng)Bringing Machine Learning to Software-Defined Networks影響因子(影響力)




書(shū)目名稱(chēng)Bringing Machine Learning to Software-Defined Networks影響因子(影響力)學(xué)科排名




書(shū)目名稱(chēng)Bringing Machine Learning to Software-Defined Networks網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱(chēng)Bringing Machine Learning to Software-Defined Networks網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱(chēng)Bringing Machine Learning to Software-Defined Networks被引頻次




書(shū)目名稱(chēng)Bringing Machine Learning to Software-Defined Networks被引頻次學(xué)科排名




書(shū)目名稱(chēng)Bringing Machine Learning to Software-Defined Networks年度引用




書(shū)目名稱(chēng)Bringing Machine Learning to Software-Defined Networks年度引用學(xué)科排名




書(shū)目名稱(chēng)Bringing Machine Learning to Software-Defined Networks讀者反饋




書(shū)目名稱(chēng)Bringing Machine Learning to Software-Defined Networks讀者反饋學(xué)科排名





作者: 分期付款    時(shí)間: 2025-3-21 21:28

作者: 步履蹣跚    時(shí)間: 2025-3-22 02:38
Deep Reinforcement Learning-Based Flow Scheduling for Power-Efficient Data Center Networks,ally collects traffic distribution from switches to train its DRL model. The well-trained DRL agent of SmartFCT can quickly analyze the complicated traffic characteristics and adaptively generate an action for scheduling flows and deliberately configuring margins for different links. Following the g
作者: cutlery    時(shí)間: 2025-3-22 08:22

作者: 游行    時(shí)間: 2025-3-22 10:18
2191-5768 earning.Includes case studies that illustrate how to use macEmerging machine learning techniques bring new opportunities to flexible network control and management. This book focuses on using state-of-the-art machine learning-based approaches to improve the performance of Software-Defined Networking
作者: 紳士    時(shí)間: 2025-3-22 16:13

作者: diskitis    時(shí)間: 2025-3-22 20:30
C. Martius,H. Tiessen,P. L. G. Vlekrmation. DeepWeave learns from the historic workload trace to train the neural networks of the DRL agent and encodes the scheduling policy in the neural networks, which make coflow scheduling decisions without expert knowledge or a pre-assumed model.
作者: 雜役    時(shí)間: 2025-3-22 21:54

作者: 干涉    時(shí)間: 2025-3-23 04:55

作者: Detoxification    時(shí)間: 2025-3-23 07:00
Book 2022achine learning-based approaches to improve the performance of Software-Defined Networking (SDN). It will apply several innovative machine learning methods (e.g., Deep Reinforcement Learning, Multi-Agent Reinforcement Learning, and Graph Neural Network) to traffic engineering and controller load bal
作者: abnegate    時(shí)間: 2025-3-23 09:49
Book 2022y taking advantage of existing machine learning techniques. The book elaborates on the formulation of each problem, explains design details for each scheme, and provides solutions by running mathematical optimization processes, conducting simulated experiments, and analyzing the experimental results.
作者: legislate    時(shí)間: 2025-3-23 17:40

作者: Fermentation    時(shí)間: 2025-3-23 19:38

作者: DRILL    時(shí)間: 2025-3-24 01:24

作者: photopsia    時(shí)間: 2025-3-24 04:01
Cecilia Pahlberg,Magnus Perssonamework for each agent in the MARL model. The DRL-based solution takes the workload pattern in the control plane as input and generates the migration decision as the output. When training is done, the DRL agent can quickly and accurately decide how to migrate switches among the controllers.
作者: 期滿(mǎn)    時(shí)間: 2025-3-24 07:05

作者: 使痛苦    時(shí)間: 2025-3-24 12:13

作者: JAMB    時(shí)間: 2025-3-24 15:04

作者: NAIVE    時(shí)間: 2025-3-24 22:25
Multi-Agent Reinforcement Learning-Based Controller Load Balancing in SD-WANs,amework for each agent in the MARL model. The DRL-based solution takes the workload pattern in the control plane as input and generates the migration decision as the output. When training is done, the DRL agent can quickly and accurately decide how to migrate switches among the controllers.
作者: 脫離    時(shí)間: 2025-3-25 00:41
Amjad Hadjikhani,Pervez Ghauri,Jan JohansonIn this chapter, we introduce software-defined networking, and its two typical application scenarios: wide area networks and data center networks. We also briefly introduce emerging machine learning techniques to improve network performance that are used in the rest of this book.
作者: Truculent    時(shí)間: 2025-3-25 06:57
Machine Learning for Software-Defined Networking,In this chapter, we introduce software-defined networking, and its two typical application scenarios: wide area networks and data center networks. We also briefly introduce emerging machine learning techniques to improve network performance that are used in the rest of this book.
作者: 西瓜    時(shí)間: 2025-3-25 09:04
Bringing Machine Learning to Software-Defined Networks978-981-19-4874-9Series ISSN 2191-5768 Series E-ISSN 2191-5776
作者: 圓錐    時(shí)間: 2025-3-25 12:18

作者: 牛的細(xì)微差別    時(shí)間: 2025-3-25 17:29

作者: browbeat    時(shí)間: 2025-3-25 21:00

作者: beta-cells    時(shí)間: 2025-3-26 02:53
SpringerBriefs in Computer Sciencehttp://image.papertrans.cn/b/image/190849.jpg
作者: 平息    時(shí)間: 2025-3-26 05:22

作者: Antarctic    時(shí)間: 2025-3-26 09:36

作者: Cervical-Spine    時(shí)間: 2025-3-26 15:20
8樓
作者: 四目在模仿    時(shí)間: 2025-3-26 16:54
8樓
作者: ascend    時(shí)間: 2025-3-27 00:33
9樓
作者: 拋棄的貨物    時(shí)間: 2025-3-27 01:58
9樓
作者: 爆米花    時(shí)間: 2025-3-27 07:11
9樓
作者: CROW    時(shí)間: 2025-3-27 12:41
9樓
作者: 摻假    時(shí)間: 2025-3-27 15:11
10樓
作者: uncertain    時(shí)間: 2025-3-27 18:24
10樓
作者: extrovert    時(shí)間: 2025-3-27 22:25
10樓
作者: prostatitis    時(shí)間: 2025-3-28 04:44
10樓




歡迎光臨 派博傳思國(guó)際中心 (http://www.pjsxioz.cn/) Powered by Discuz! X3.5
多伦县| 阜南县| 屏山县| 文水县| 银川市| 正宁县| 永寿县| 临安市| 潢川县| 辽源市| 定日县| 新营市| 瑞昌市| 威远县| 通江县| 大关县| 兴仁县| 潞西市| 平江县| 永城市| 依安县| 侯马市| 和静县| 六盘水市| 乐至县| 莲花县| 岳普湖县| 吉首市| 漠河县| 白银市| 永胜县| 乌兰浩特市| 乌兰浩特市| 井研县| 汽车| 忻州市| 枣庄市| 米易县| 武平县| 百色市| 和硕县|