派博傳思國際中心

標題: Titlebook: Branching Random Walks; école d‘été de Proba Zhan Shi Book 2015 Springer International Publishing Switzerland 2015 60J80,60J85,60G50 60K37. [打印本頁]

作者: CLIP    時間: 2025-3-21 17:43
書目名稱Branching Random Walks影響因子(影響力)




書目名稱Branching Random Walks影響因子(影響力)學科排名




書目名稱Branching Random Walks網絡公開度




書目名稱Branching Random Walks網絡公開度學科排名




書目名稱Branching Random Walks被引頻次




書目名稱Branching Random Walks被引頻次學科排名




書目名稱Branching Random Walks年度引用




書目名稱Branching Random Walks年度引用學科排名




書目名稱Branching Random Walks讀者反饋




書目名稱Branching Random Walks讀者反饋學科排名





作者: Highbrow    時間: 2025-3-22 00:06

作者: FLEET    時間: 2025-3-22 02:16
Zhan ShiIncludes supplementary material:
作者: 減去    時間: 2025-3-22 07:16

作者: figment    時間: 2025-3-22 11:07

作者: 命令變成大炮    時間: 2025-3-22 13:36

作者: 不溶解    時間: 2025-3-22 19:36

作者: Infuriate    時間: 2025-3-22 21:43
Magnetic Control of Tokamak Plasmasa. As a first application of the many-to-one formula, we deduce the asymptotic velocity of the leftmost position in the branching random walk. The chapter ends with some examples of branching random walks and more general hierarchical fields.
作者: MORPH    時間: 2025-3-23 02:18
Plasma Position and Current Control at FTU, in the spatial sense, by associating each individual of the branching process with a random variable. This results in a .. We present several martingales that are naturally related to the branching random walk, and study some elementary properties.
作者: Assemble    時間: 2025-3-23 08:27
Magnetic Control of Tokamak Plasmasa. As a first application of the many-to-one formula, we deduce the asymptotic velocity of the leftmost position in the branching random walk. The chapter ends with some examples of branching random walks and more general hierarchical fields.
作者: 亂砍    時間: 2025-3-23 11:41
Plasma Magnetic Control Problemin Sect.?2.3 the beautiful conceptual proof by Lyons et al.?(Ann?Probab 23:1125–1138, 1995) of the Kesten–Stigum theorem for the branching process. The goal of this brief chapter is to give an . of the spinal decomposition theorem, in the simple setting of the Galton–Watson tree. If you are already
作者: SPASM    時間: 2025-3-23 14:29
Plasma Position and Current Control at FTU, in the spatial sense, by associating each individual of the branching process with a random variable. This results in a .. We present several martingales that are naturally related to the branching random walk, and study some elementary properties.
作者: judicial    時間: 2025-3-23 21:15

作者: 胖人手藝好    時間: 2025-3-24 00:38

作者: 符合規(guī)定    時間: 2025-3-24 05:47

作者: 擴張    時間: 2025-3-24 09:32

作者: installment    時間: 2025-3-24 12:26
978-3-319-25371-8Springer International Publishing Switzerland 2015
作者: 一大塊    時間: 2025-3-24 17:56

作者: 花費    時間: 2025-3-24 22:18

作者: Exposition    時間: 2025-3-25 00:26
0075-8434 n the asymptotic properties of one-dimensional discrete-time supercritical branching random walks, and in particular, on extreme positions in each generation, as well as the evolution of these positions over time. ..Starting with the simple case of Galton-Watson trees, the text primarily concentrate
作者: Nefarious    時間: 2025-3-25 04:38
Plasma Magnetic Control Probleme goal of this brief chapter is to give an . of the spinal decomposition theorem, in the simple setting of the Galton–Watson tree. If you are already familiar with any form of the spinal decomposition theorem, this chapter can be skipped.
作者: AVOW    時間: 2025-3-25 10:37

作者: 注意到    時間: 2025-3-25 15:23

作者: Alveoli    時間: 2025-3-25 16:33
Branching Random Walks with Selection,roof is given, though most of the ingredients needed in the proofs have already been seen by us in the previous chapters..The present chapter is devoted to a few models of branching random walks in presence of certain selection criteria.
作者: 母豬    時間: 2025-3-25 20:27

作者: ENNUI    時間: 2025-3-26 01:21
https://doi.org/10.1007/978-1-84800-324-8ven level along the spine. The power of the spinal decomposition theorem will be seen via a few case studies in the following chapters. Here, we prove in Sect.?4.8, as a first application, the Biggins martingale convergence theorem for the branching random walk, already stated in Sect.?3.2 as Theorem?3.2.
作者: headway    時間: 2025-3-26 07:51
The Spinal Decomposition Theorem,ven level along the spine. The power of the spinal decomposition theorem will be seen via a few case studies in the following chapters. Here, we prove in Sect.?4.8, as a first application, the Biggins martingale convergence theorem for the branching random walk, already stated in Sect.?3.2 as Theorem?3.2.
作者: Palate    時間: 2025-3-26 10:55
Book 2015positions over time. ..Starting with the simple case of Galton-Watson trees, the text primarily concentrates on exploiting, in various contexts, the spinal structure of branching random walks. The notes end with some applications to biased random walks on trees..
作者: 柔軟    時間: 2025-3-26 15:45

作者: 帶來墨水    時間: 2025-3-26 19:10

作者: 開始發(fā)作    時間: 2025-3-26 22:17

作者: Indigence    時間: 2025-3-27 03:08

作者: 否決    時間: 2025-3-27 06:46

作者: Bridle    時間: 2025-3-27 12:12

作者: Serenity    時間: 2025-3-27 15:14
Branching Random Walks with Selection,wo very short chapters where the branching random walk intervenes in more complicated models; these topics are close to my current research work. No proof is given, though most of the ingredients needed in the proofs have already been seen by us in the previous chapters..The present chapter is devot
作者: oracle    時間: 2025-3-27 21:24
10樓
作者: Tempor    時間: 2025-3-27 23:23
10樓
作者: Adulate    時間: 2025-3-28 02:14
10樓
作者: 線    時間: 2025-3-28 10:16
10樓




歡迎光臨 派博傳思國際中心 (http://www.pjsxioz.cn/) Powered by Discuz! X3.5
潢川县| 渭源县| 闽侯县| 鄂尔多斯市| 永城市| 城固县| 靖江市| 疏附县| 原阳县| 郓城县| 三河市| 竹北市| 三门峡市| 梧州市| 九江市| 逊克县| 新晃| 乐都县| 安阳市| 南阳市| 科技| 廉江市| 宁海县| 平利县| 宜都市| 鄂托克旗| 昌吉市| 阿鲁科尔沁旗| 四子王旗| 东阿县| 临西县| 鄂州市| 衡南县| 甘德县| 集贤县| 利川市| 长泰县| 美姑县| 临夏市| 吴堡县| 横山县|