標題: Titlebook: Branching Random Walks; école d‘été de Proba Zhan Shi Book 2015 Springer International Publishing Switzerland 2015 60J80,60J85,60G50 60K37. [打印本頁] 作者: CLIP 時間: 2025-3-21 17:43
書目名稱Branching Random Walks影響因子(影響力)
書目名稱Branching Random Walks影響因子(影響力)學科排名
書目名稱Branching Random Walks網絡公開度
書目名稱Branching Random Walks網絡公開度學科排名
書目名稱Branching Random Walks被引頻次
書目名稱Branching Random Walks被引頻次學科排名
書目名稱Branching Random Walks年度引用
書目名稱Branching Random Walks年度引用學科排名
書目名稱Branching Random Walks讀者反饋
書目名稱Branching Random Walks讀者反饋學科排名
作者: Highbrow 時間: 2025-3-22 00:06 作者: FLEET 時間: 2025-3-22 02:16
Zhan ShiIncludes supplementary material: 作者: 減去 時間: 2025-3-22 07:16 作者: figment 時間: 2025-3-22 11:07 作者: 命令變成大炮 時間: 2025-3-22 13:36 作者: 不溶解 時間: 2025-3-22 19:36 作者: Infuriate 時間: 2025-3-22 21:43
Magnetic Control of Tokamak Plasmasa. As a first application of the many-to-one formula, we deduce the asymptotic velocity of the leftmost position in the branching random walk. The chapter ends with some examples of branching random walks and more general hierarchical fields.作者: MORPH 時間: 2025-3-23 02:18
Plasma Position and Current Control at FTU, in the spatial sense, by associating each individual of the branching process with a random variable. This results in a .. We present several martingales that are naturally related to the branching random walk, and study some elementary properties.作者: Assemble 時間: 2025-3-23 08:27
Magnetic Control of Tokamak Plasmasa. As a first application of the many-to-one formula, we deduce the asymptotic velocity of the leftmost position in the branching random walk. The chapter ends with some examples of branching random walks and more general hierarchical fields.作者: 亂砍 時間: 2025-3-23 11:41
Plasma Magnetic Control Problemin Sect.?2.3 the beautiful conceptual proof by Lyons et al.?(Ann?Probab 23:1125–1138, 1995) of the Kesten–Stigum theorem for the branching process. The goal of this brief chapter is to give an . of the spinal decomposition theorem, in the simple setting of the Galton–Watson tree. If you are already 作者: SPASM 時間: 2025-3-23 14:29
Plasma Position and Current Control at FTU, in the spatial sense, by associating each individual of the branching process with a random variable. This results in a .. We present several martingales that are naturally related to the branching random walk, and study some elementary properties.作者: judicial 時間: 2025-3-23 21:15 作者: 胖人手藝好 時間: 2025-3-24 00:38 作者: 符合規(guī)定 時間: 2025-3-24 05:47 作者: 擴張 時間: 2025-3-24 09:32 作者: installment 時間: 2025-3-24 12:26
978-3-319-25371-8Springer International Publishing Switzerland 2015作者: 一大塊 時間: 2025-3-24 17:56 作者: 花費 時間: 2025-3-24 22:18 作者: Exposition 時間: 2025-3-25 00:26
0075-8434 n the asymptotic properties of one-dimensional discrete-time supercritical branching random walks, and in particular, on extreme positions in each generation, as well as the evolution of these positions over time. ..Starting with the simple case of Galton-Watson trees, the text primarily concentrate作者: Nefarious 時間: 2025-3-25 04:38
Plasma Magnetic Control Probleme goal of this brief chapter is to give an . of the spinal decomposition theorem, in the simple setting of the Galton–Watson tree. If you are already familiar with any form of the spinal decomposition theorem, this chapter can be skipped.作者: AVOW 時間: 2025-3-25 10:37 作者: 注意到 時間: 2025-3-25 15:23 作者: Alveoli 時間: 2025-3-25 16:33
Branching Random Walks with Selection,roof is given, though most of the ingredients needed in the proofs have already been seen by us in the previous chapters..The present chapter is devoted to a few models of branching random walks in presence of certain selection criteria.作者: 母豬 時間: 2025-3-25 20:27 作者: ENNUI 時間: 2025-3-26 01:21
https://doi.org/10.1007/978-1-84800-324-8ven level along the spine. The power of the spinal decomposition theorem will be seen via a few case studies in the following chapters. Here, we prove in Sect.?4.8, as a first application, the Biggins martingale convergence theorem for the branching random walk, already stated in Sect.?3.2 as Theorem?3.2.作者: headway 時間: 2025-3-26 07:51
The Spinal Decomposition Theorem,ven level along the spine. The power of the spinal decomposition theorem will be seen via a few case studies in the following chapters. Here, we prove in Sect.?4.8, as a first application, the Biggins martingale convergence theorem for the branching random walk, already stated in Sect.?3.2 as Theorem?3.2.作者: Palate 時間: 2025-3-26 10:55
Book 2015positions over time. ..Starting with the simple case of Galton-Watson trees, the text primarily concentrates on exploiting, in various contexts, the spinal structure of branching random walks. The notes end with some applications to biased random walks on trees..作者: 柔軟 時間: 2025-3-26 15:45 作者: 帶來墨水 時間: 2025-3-26 19:10 作者: 開始發(fā)作 時間: 2025-3-26 22:17 作者: Indigence 時間: 2025-3-27 03:08 作者: 否決 時間: 2025-3-27 06:46 作者: Bridle 時間: 2025-3-27 12:12 作者: Serenity 時間: 2025-3-27 15:14
Branching Random Walks with Selection,wo very short chapters where the branching random walk intervenes in more complicated models; these topics are close to my current research work. No proof is given, though most of the ingredients needed in the proofs have already been seen by us in the previous chapters..The present chapter is devot作者: oracle 時間: 2025-3-27 21:24
10樓作者: Tempor 時間: 2025-3-27 23:23
10樓作者: Adulate 時間: 2025-3-28 02:14
10樓作者: 線 時間: 2025-3-28 10:16
10樓