標(biāo)題: Titlebook: Boundary Behaviour of Conformal Maps; Christian Pommerenke Book 1992 Springer-Verlag Berlin Heidelberg 1992 Smooth function.boundary behav [打印本頁(yè)] 作者: Destruct 時(shí)間: 2025-3-21 17:50
書(shū)目名稱(chēng)Boundary Behaviour of Conformal Maps影響因子(影響力)
書(shū)目名稱(chēng)Boundary Behaviour of Conformal Maps影響因子(影響力)學(xué)科排名
書(shū)目名稱(chēng)Boundary Behaviour of Conformal Maps網(wǎng)絡(luò)公開(kāi)度
書(shū)目名稱(chēng)Boundary Behaviour of Conformal Maps網(wǎng)絡(luò)公開(kāi)度學(xué)科排名
書(shū)目名稱(chēng)Boundary Behaviour of Conformal Maps被引頻次
書(shū)目名稱(chēng)Boundary Behaviour of Conformal Maps被引頻次學(xué)科排名
書(shū)目名稱(chēng)Boundary Behaviour of Conformal Maps年度引用
書(shū)目名稱(chēng)Boundary Behaviour of Conformal Maps年度引用學(xué)科排名
書(shū)目名稱(chēng)Boundary Behaviour of Conformal Maps讀者反饋
書(shū)目名稱(chēng)Boundary Behaviour of Conformal Maps讀者反饋學(xué)科排名
作者: Confidential 時(shí)間: 2025-3-21 22:56 作者: 胖人手藝好 時(shí)間: 2025-3-22 02:13 作者: 故意 時(shí)間: 2025-3-22 06:07
https://doi.org/10.1007/978-94-6209-722-3We now study the behaviour of the derivative .′ for the case that the image domain . = .(D) has a reasonably smooth boundary .; the general case will be studied in later chapters.作者: Tractable 時(shí)間: 2025-3-22 12:46
Tor Vidar Eilertsen,Rachel JakhellnLet . map D conformally onto . ? ?. We shall study the behaviour of . for general domains .. The tangent angle is related to arg . whereas . describes how sets are compressed or expanded. The results of this chapter will be often used later on.作者: 輕信 時(shí)間: 2025-3-22 15:15 作者: dandruff 時(shí)間: 2025-3-22 17:32
Tor Vidar Eilertsen,Rachel JakhellnLinear measure . is a generalization of length and was studied in detail by Besicovitch (Bes38). We follow the excellent presentation in Fa185. The linear measure is an important special case of a Hausdorff measure to be discussed in Section 10.2; see Rog70.作者: Adulate 時(shí)間: 2025-3-22 23:44
Traces of Nordic Educational TraditionsWe now consider domains with rectifiable boundaries in more detail. Let . map D conformally onto the inner domain . of the Jordan curve .. We have shown in Section 6.3 that . is rectifiable if and only if .′ belongs to the Hardy space ...作者: nonplus 時(shí)間: 2025-3-23 04:36
https://doi.org/10.1007/978-3-658-09497-3We first consider the classical problem how the integral means . of the conformal map . grow as . → 1—..作者: 直言不諱 時(shí)間: 2025-3-23 08:20 作者: 比目魚(yú) 時(shí)間: 2025-3-23 12:11
https://doi.org/10.1057/9780230297739We first consider quasicircles . for which.where . lies on . between . and ..作者: 神圣在玷污 時(shí)間: 2025-3-23 16:38 作者: Abbreviate 時(shí)間: 2025-3-23 18:53 作者: Excitotoxin 時(shí)間: 2025-3-24 00:03 作者: 哭得清醒了 時(shí)間: 2025-3-24 05:13 作者: Affiliation 時(shí)間: 2025-3-24 09:37
Linear Measure,Linear measure . is a generalization of length and was studied in detail by Besicovitch (Bes38). We follow the excellent presentation in Fa185. The linear measure is an important special case of a Hausdorff measure to be discussed in Section 10.2; see Rog70.作者: RECUR 時(shí)間: 2025-3-24 11:33 作者: 尖酸一點(diǎn) 時(shí)間: 2025-3-24 17:07 作者: PANEL 時(shí)間: 2025-3-24 20:50 作者: 山崩 時(shí)間: 2025-3-25 02:14 作者: climax 時(shí)間: 2025-3-25 04:58 作者: 鞏固 時(shí)間: 2025-3-25 08:25
https://doi.org/10.1007/978-3-662-02770-7Smooth function; boundary behaviour; complex analysis; conformal map; differential equation; partial diff作者: Freeze 時(shí)間: 2025-3-25 13:49 作者: 冬眠 時(shí)間: 2025-3-25 17:42 作者: packet 時(shí)間: 2025-3-25 21:31 作者: ARCH 時(shí)間: 2025-3-26 01:08 作者: 新鮮 時(shí)間: 2025-3-26 05:06
6樓作者: 伙伴 時(shí)間: 2025-3-26 08:39
6樓作者: Adrenal-Glands 時(shí)間: 2025-3-26 14:49
7樓作者: Nonconformist 時(shí)間: 2025-3-26 20:20
7樓作者: 多骨 時(shí)間: 2025-3-26 23:15
7樓作者: 集聚成團(tuán) 時(shí)間: 2025-3-27 01:44
7樓作者: 不要不誠(chéng)實(shí) 時(shí)間: 2025-3-27 08:04
8樓作者: 玷污 時(shí)間: 2025-3-27 09:29
8樓作者: 似少年 時(shí)間: 2025-3-27 17:25
8樓作者: 有毛就脫毛 時(shí)間: 2025-3-27 18:07
9樓作者: Acumen 時(shí)間: 2025-3-27 23:15
9樓作者: 鞠躬 時(shí)間: 2025-3-28 05:06
9樓作者: Type-1-Diabetes 時(shí)間: 2025-3-28 07:02
9樓作者: BILE 時(shí)間: 2025-3-28 14:02
10樓作者: 脫水 時(shí)間: 2025-3-28 16:05
10樓作者: 最有利 時(shí)間: 2025-3-28 21:25
10樓作者: aqueduct 時(shí)間: 2025-3-28 23:45
10樓