派博傳思國際中心

標題: Titlebook: Boolean Algebras; Reihe: Reelle Funkti Roman Sikorski Book 19601st edition Springer-Verlag Berlin Heidelberg 1960 Boolescher Verband.Finite [打印本頁]

作者: Enlightening    時間: 2025-3-21 19:05
書目名稱Boolean Algebras影響因子(影響力)




書目名稱Boolean Algebras影響因子(影響力)學科排名




書目名稱Boolean Algebras網絡公開度




書目名稱Boolean Algebras網絡公開度學科排名




書目名稱Boolean Algebras被引頻次




書目名稱Boolean Algebras被引頻次學科排名




書目名稱Boolean Algebras年度引用




書目名稱Boolean Algebras年度引用學科排名




書目名稱Boolean Algebras讀者反饋




書目名稱Boolean Algebras讀者反饋學科排名





作者: 最高點    時間: 2025-3-21 20:46
Infinite joins and meets,Let A., . . . ,.. be elements of a Boolean algebra A. The finite join .is the least element containing all elements .., . . . ,.. i. e. it is characterized uniquely by the following two conditions:
作者: 忙碌    時間: 2025-3-22 02:45

作者: happiness    時間: 2025-3-22 07:20
https://doi.org/10.1007/b119172 properties as the set-theoretical union, intersection and complementation of subsets of a fixed space. Since the elements of A have many properties of sets, we shall denote them by capital letters .,... used generally to denote sets. For arbitrary elements . ∈ A, . ∪ . and . ∩ . are elements in A,
作者: 后退    時間: 2025-3-22 09:33
Ergebnisse der Mathematik und ihrer Grenzgebiete. 2. Folgehttp://image.papertrans.cn/b/image/189772.jpg
作者: 字形刻痕    時間: 2025-3-22 16:14
https://doi.org/10.1007/978-3-662-01492-9Boolescher Verband; Finite; Mathematica; Morphism; algebra; calculus; function; logic; mathematics; proof; set
作者: Genetics    時間: 2025-3-22 18:36

作者: 畫布    時間: 2025-3-23 01:15

作者: 做事過頭    時間: 2025-3-23 04:49

作者: 潛伏期    時間: 2025-3-23 05:45
Book 19601st editionons from General Set Theory and Set-theoretical Topology. No knowledge of Lattice Theory or AbstractAlgebra is supposed. Less known topological theorems are recalled. Only a few examples use more advanced topological means but they can be omitted. All theorems in both Chapters are given with full pr
作者: 舊石器時代    時間: 2025-3-23 10:10

作者: 狼群    時間: 2025-3-23 16:12
Book 19601st editionaic rings, or as a generalization of the set-theoretical notion of field of sets. Fundamental theorems in the both directions are due to M. H. STONE whose papers have opened a new period in the development of the theory. This work treats of the set-theoretical aspect, the algebraic one being scarcel
作者: 希望    時間: 2025-3-23 20:48

作者: ensemble    時間: 2025-3-23 22:55

作者: 熱情贊揚    時間: 2025-3-24 03:28
Finite joins and meets,by . and called the . of .. The operations ∪, ∩, — are characterized by a set of axioms assuring that these operations have properties analogoues to those of union, intersection and complementation of sets respectively. Many equivalent sets of axioms characterizing ∪, ∩, — are known.. We assume here the following one.:
作者: reserve    時間: 2025-3-24 07:32
Terminology and notation,eet. They hold also for the symbols “ . ” and “ . ” of the corresponding infinite operations (see also notation on p. 50–51 for infinite Boolean joins and meets) and for the symbol “—” of complementation and the symbol “ ? ” of inclusion.
作者: expound    時間: 2025-3-24 13:14
of algebraic rings, or as a generalization of the set-theoretical notion of field of sets. Fundamental theorems in the both directions are due to M. H. STONE whose papers have opened a new period in the development of the theory. This work treats of the set-theoretical aspect, the algebraic one bei
作者: 不要不誠實    時間: 2025-3-24 16:14
6樓
作者: conspicuous    時間: 2025-3-24 21:08
6樓
作者: 極端的正確性    時間: 2025-3-24 23:23
6樓
作者: lambaste    時間: 2025-3-25 06:02
6樓
作者: Ornithologist    時間: 2025-3-25 09:00
7樓
作者: Engaging    時間: 2025-3-25 14:18
7樓
作者: 肥料    時間: 2025-3-25 19:25
7樓
作者: 預兆好    時間: 2025-3-25 23:09
7樓
作者: gregarious    時間: 2025-3-26 00:32
8樓
作者: 刪減    時間: 2025-3-26 07:57
8樓
作者: 出沒    時間: 2025-3-26 10:13
8樓
作者: Offbeat    時間: 2025-3-26 14:52
9樓
作者: Stagger    時間: 2025-3-26 18:22
9樓
作者: 消散    時間: 2025-3-26 21:08
9樓
作者: 禍害隱伏    時間: 2025-3-27 04:28
9樓
作者: 暫時休息    時間: 2025-3-27 06:32
10樓
作者: 保存    時間: 2025-3-27 11:54
10樓
作者: reptile    時間: 2025-3-27 15:05
10樓
作者: Aggregate    時間: 2025-3-27 18:30
10樓




歡迎光臨 派博傳思國際中心 (http://www.pjsxioz.cn/) Powered by Discuz! X3.5
平舆县| 汪清县| 绵竹市| 平乐县| 隆子县| 五华县| 沅江市| 湖南省| 长宁区| 卢湾区| 宁强县| 德州市| 包头市| 和林格尔县| 磐安县| 景洪市| 桂东县| 尼玛县| 新乡县| 武山县| 凤翔县| 新乡县| 黑水县| 邯郸市| 安溪县| 夏河县| 固安县| 柳州市| 东乌| 庆元县| 余江县| 浦东新区| 枣庄市| 德阳市| 鄱阳县| 华安县| 满城县| 高台县| 洱源县| 砀山县| 长海县|