派博傳思國(guó)際中心

標(biāo)題: Titlebook: Birational Geometry and Moduli Spaces; Elisabetta Colombo,Barbara Fantechi,Rita Pardini Book 2020 Springer Nature Switzerland AG 2020 Modu [打印本頁(yè)]

作者: JAR    時(shí)間: 2025-3-21 16:41
書目名稱Birational Geometry and Moduli Spaces影響因子(影響力)




書目名稱Birational Geometry and Moduli Spaces影響因子(影響力)學(xué)科排名




書目名稱Birational Geometry and Moduli Spaces網(wǎng)絡(luò)公開(kāi)度




書目名稱Birational Geometry and Moduli Spaces網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書目名稱Birational Geometry and Moduli Spaces被引頻次




書目名稱Birational Geometry and Moduli Spaces被引頻次學(xué)科排名




書目名稱Birational Geometry and Moduli Spaces年度引用




書目名稱Birational Geometry and Moduli Spaces年度引用學(xué)科排名




書目名稱Birational Geometry and Moduli Spaces讀者反饋




書目名稱Birational Geometry and Moduli Spaces讀者反饋學(xué)科排名





作者: arthroplasty    時(shí)間: 2025-3-21 23:29
Elisabetta Colombo,Barbara Fantechi,Rita PardiniIncludes high-quality contributions from leading experts.Provides a wide variety of examples and up-to-date surveys.Offers new connections between birational geometry and moduli spaces
作者: Nonthreatening    時(shí)間: 2025-3-22 03:56

作者: disciplined    時(shí)間: 2025-3-22 08:38
https://doi.org/10.1007/978-3-030-37114-2Moduli Spaces; Birational Geometry; Deformation Theory; Holomorphic sympletic manifolds; Birational tran
作者: 騎師    時(shí)間: 2025-3-22 10:16
978-3-030-37116-6Springer Nature Switzerland AG 2020
作者: 顧客    時(shí)間: 2025-3-22 16:04
https://doi.org/10.1007/978-3-322-89855-5We survey some results about rational curves on hyperk?hler manifolds, explaining how to prove a certain deformation-invariance statement for loci covered by rational curves with negative Beauville–Bogomolov square.
作者: jettison    時(shí)間: 2025-3-22 20:26

作者: 褲子    時(shí)間: 2025-3-23 00:43
Programmieren von MikrocomputernIt is known that a maximal intersection log canonical Calabi–Yau surface pair is crepant birational to a toric pair. This does not hold in higher dimension: this article presents some examples of maximal intersection Calabi–Yau pairs that admit no toric model.
作者: 桉樹(shù)    時(shí)間: 2025-3-23 05:21

作者: adipose-tissue    時(shí)間: 2025-3-23 06:43
,Programmaufbau und -ausführung,In this note we illustrate the Fanosearch programme of Coates, Corti, Galkin, Golyshev, and Kasprzyk in the example of the anticanonical cone over the smooth del Pezzo surface of degree 6.
作者: folliculitis    時(shí)間: 2025-3-23 13:35
Programmieren von MikrocomputernIn this paper we show that the Chern numbers of a smooth Mori fibre space in dimension three are bounded in terms of the underlying topological manifold. We also generalise a theorem of Cascini and the second named author on the boundedness of Chern numbers of certain threefolds to the case of negative Kodaira dimension.
作者: Certainty    時(shí)間: 2025-3-23 15:50
,Negative Rational Curves and Their Deformations on Hyperk?hler Manifolds,We survey some results about rational curves on hyperk?hler manifolds, explaining how to prove a certain deformation-invariance statement for loci covered by rational curves with negative Beauville–Bogomolov square.
作者: 清唱?jiǎng)?nbsp;   時(shí)間: 2025-3-23 21:37
A Travel Guide to the Canonical Bundle Formula,We survey known results on the canonical bundle formula and its applications in algebraic geometry.
作者: 十字架    時(shí)間: 2025-3-23 22:35
,Some Examples of Calabi–Yau Pairs with Maximal Intersection and No Toric Model,It is known that a maximal intersection log canonical Calabi–Yau surface pair is crepant birational to a toric pair. This does not hold in higher dimension: this article presents some examples of maximal intersection Calabi–Yau pairs that admit no toric model.
作者: 不愿    時(shí)間: 2025-3-24 03:16
What is the Monodromy Property for Degenerations of Calabi-Yau Varieties?,In this survey, we discuss the state of art about the monodromy property for Calabi-Yau varieties. We explain what is the monodromy property for Calabi-Yau varieties and then discuss some examples of Calabi-Yau varieties that satisfy this property. After this recap, we discuss a possible approach to future research in this area.
作者: Anticoagulants    時(shí)間: 2025-3-24 10:30

作者: dapper    時(shí)間: 2025-3-24 13:41

作者: Granular    時(shí)間: 2025-3-24 17:48
Birational Geometry and Moduli Spaces978-3-030-37114-2Series ISSN 2281-518X Series E-ISSN 2281-5198
作者: arthroplasty    時(shí)間: 2025-3-24 22:13
Schnittpunktsatz, statisches Moment,bic threefolds, as described by Allcock, Carlson and Toledo, and the moduli space of fourfolds of .3.-type with a special non-symplectic automorphism of order three; then, I will show some consequences of this isomorphism concerning degenerations of non-symplectic automorphisms. Finally we will expl
作者: Ferritin    時(shí)間: 2025-3-25 01:51

作者: 起波瀾    時(shí)間: 2025-3-25 06:38
Programmbeispiele aus der Mathematik, homotopy classes of DG-Lie algebras, each one of them controlling this above deformation problem: the first homotopy type is described in terms of the projective model structure on the category of diagrams of differential graded algebras, the others in terms of the Reedy model structure on truncate
作者: 口訣    時(shí)間: 2025-3-25 10:13
Programmieren von Taschenrechnernes. In particular, we consider the natural embedding of the space of complete quadrics into the space of complete collineations and we observe that their birational geometry, from the point of view of Mori theory, fully determines each other. When two varieties are related in this way, we call them
作者: Asperity    時(shí)間: 2025-3-25 12:02

作者: Mumble    時(shí)間: 2025-3-25 15:59

作者: 弓箭    時(shí)間: 2025-3-25 21:01
A Note on Severi Varieties of Nodal Curves on Enriques Surfaces,let ..(.) be the Severi variety of irreducible .-nodal curves in |.|. We denote by .?:?.?→?. the universal covering of .. In this note we compute the dimensions of the irreducible components .?of ..(.). In particular we prove that, if . is the curve corresponding to a general element [.] of .?, then
作者: neologism    時(shí)間: 2025-3-26 01:21

作者: Critical    時(shí)間: 2025-3-26 07:46
The Lefschetz Principle in Birational Geometry: Birational Twin Varieties,es. In particular, we consider the natural embedding of the space of complete quadrics into the space of complete collineations and we observe that their birational geometry, from the point of view of Mori theory, fully determines each other. When two varieties are related in this way, we call them
作者: hyperuricemia    時(shí)間: 2025-3-26 11:33
Examples of Irreducible Symplectic Varieties,uville-Bogomolov decomposition theorem. There are several singular analogues of irreducible symplectic manifolds, in particular in the context of compact K?hler orbifolds, and in the context of normal projective varieties with canonical singularities. In this paper we will collect their definitions,
作者: extinct    時(shí)間: 2025-3-26 12:48

作者: NEX    時(shí)間: 2025-3-26 19:15
On Deformations of Diagrams of Commutative Algebras,d Bousfield-Kan approximations..The first half of the paper contains an elementary introduction to the projective model structure on the category of commutative differential graded algebras, while the second half is devoted to the main results.
作者: 創(chuàng)作    時(shí)間: 2025-3-27 00:53

作者: SIT    時(shí)間: 2025-3-27 04:48
Schnittpunktsatz, statisches Moment,of order three; then, I will show some consequences of this isomorphism concerning degenerations of non-symplectic automorphisms. Finally we will explore possible generalizations of the problem to higher dimensions and other moduli spaces of cubic threefolds.
作者: 放棄    時(shí)間: 2025-3-27 05:56

作者: olfction    時(shí)間: 2025-3-27 09:27
Programmieren von Taschenrechnerneir birational geometry, from the point of view of Mori theory, fully determines each other. When two varieties are related in this way, we call them birational twins. We explore this notion and its various flavors for other embeddings between Mori dream spaces.
作者: 全部    時(shí)間: 2025-3-27 15:57
https://doi.org/10.1007/978-3-322-89746-6act K?hler orbifolds, and in the context of normal projective varieties with canonical singularities. In this paper we will collect their definitions, analyze their mutual relations and provide a list of known examples.
作者: 富足女人    時(shí)間: 2025-3-27 21:16

作者: 鈍劍    時(shí)間: 2025-3-28 01:50
A Note on Severi Varieties of Nodal Curves on Enriques Surfaces,dimensions of the irreducible components .?of ..(.). In particular we prove that, if . is the curve corresponding to a general element [.] of .?, then the codimension of .?in |.| is . if ..(.) is irreducible in . and it is .???1 if ..(.) consists of two irreducible components.
作者: 教義    時(shí)間: 2025-3-28 02:22
The Lefschetz Principle in Birational Geometry: Birational Twin Varieties,eir birational geometry, from the point of view of Mori theory, fully determines each other. When two varieties are related in this way, we call them birational twins. We explore this notion and its various flavors for other embeddings between Mori dream spaces.
作者: 噴油井    時(shí)間: 2025-3-28 06:24
Examples of Irreducible Symplectic Varieties,act K?hler orbifolds, and in the context of normal projective varieties with canonical singularities. In this paper we will collect their definitions, analyze their mutual relations and provide a list of known examples.
作者: Defraud    時(shí)間: 2025-3-28 14:15
Book 20202018. The workshop was devoted to the interplay between birational geometry and moduli spaces and the contributions of the volume reflect the same idea, focusing on both these areas and their interaction. In particular, the book includes both surveys and original papers on irreducible holomorphic sy
作者: 扔掉掐死你    時(shí)間: 2025-3-28 15:30

作者: Tremor    時(shí)間: 2025-3-28 19:00
10樓
作者: 合唱隊(duì)    時(shí)間: 2025-3-29 00:58
10樓
作者: STING    時(shí)間: 2025-3-29 06:13
10樓
作者: Cacophonous    時(shí)間: 2025-3-29 08:45
10樓




歡迎光臨 派博傳思國(guó)際中心 (http://www.pjsxioz.cn/) Powered by Discuz! X3.5
宁河县| 吴堡县| 吉安市| 右玉县| 呈贡县| 准格尔旗| 建水县| 涟水县| 义乌市| 南昌县| 资兴市| 长沙县| 晋江市| 孝感市| 湘潭县| 新余市| 新营市| 乌拉特中旗| 额尔古纳市| 卫辉市| 鹰潭市| 韩城市| 孝感市| 琼中| 武冈市| 五大连池市| 都江堰市| 东源县| 称多县| 长垣县| 富宁县| 五大连池市| 青铜峡市| 赣州市| 孟州市| 波密县| 清河县| 柘荣县| 潢川县| 长寿区| 南开区|