派博傳思國(guó)際中心

標(biāo)題: Titlebook: Bildverarbeitung für die Medizin 2020; Algorithmen – System Thomas Tolxdorff,Thomas M. Deserno,Christoph Palm Conference proceedings 2020 S [打印本頁(yè)]

作者: Ferret    時(shí)間: 2025-3-21 17:17
書目名稱Bildverarbeitung für die Medizin 2020影響因子(影響力)




書目名稱Bildverarbeitung für die Medizin 2020影響因子(影響力)學(xué)科排名




書目名稱Bildverarbeitung für die Medizin 2020網(wǎng)絡(luò)公開度




書目名稱Bildverarbeitung für die Medizin 2020網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Bildverarbeitung für die Medizin 2020被引頻次




書目名稱Bildverarbeitung für die Medizin 2020被引頻次學(xué)科排名




書目名稱Bildverarbeitung für die Medizin 2020年度引用




書目名稱Bildverarbeitung für die Medizin 2020年度引用學(xué)科排名




書目名稱Bildverarbeitung für die Medizin 2020讀者反饋




書目名稱Bildverarbeitung für die Medizin 2020讀者反饋學(xué)科排名





作者: 手段    時(shí)間: 2025-3-22 00:10

作者: 沒有希望    時(shí)間: 2025-3-22 04:12

作者: 勤勞    時(shí)間: 2025-3-22 08:10
1431-472X Industrie und AnwendernIn den letzten Jahren hat sich der Workshop "Bildverarbeitung für die Medizin" durch erfolgreiche Veranstaltungen etabliert. Ziel ist auch 2020 wieder die Darstellung aktueller Forschungsergebnisse und die Vertiefung der Gespr?che zwischen Wissenschaftlern, Industrie und Anwen
作者: 不朽中國(guó)    時(shí)間: 2025-3-22 10:49

作者: legacy    時(shí)間: 2025-3-22 15:50

作者: MARS    時(shí)間: 2025-3-22 17:27

作者: Ingenuity    時(shí)間: 2025-3-22 22:51
https://doi.org/10.1007/978-1-349-61373-1tation of abdominal fat images from 3D Dixon magnetic resonance (MR) scans – a very expensive and time-consuming process. To this end, we recently proposed Fat-SegNet [1] a fully automated pipeline to accurately segment adipose tissue inside a consistent anatomically defined abdominal region.
作者: 故意釣到白楊    時(shí)間: 2025-3-23 04:16
Deep Segmentation of Bacteria at Different Stages of the Life Cycle, learning method with shape-based weighting of the loss function to accurately segment bacteria during different stages of the life cycle. We evaluate the performance of the method for live cell microscopy images of Bacillus subtilis bacteria with strong changes during the life cycle.
作者: 火花    時(shí)間: 2025-3-23 08:23

作者: 飛來飛去真休    時(shí)間: 2025-3-23 12:25
Automatische Detektion von Zwischenorgan-3D-Barrieren in abdominalen CT-Daten,hsam schichtweise erstellt. Hier wird ein neuer vollautomatischer Ansatz zum Finden von virtuellen 3D-Barrieren mit maschinellen Lernmethoden vorgestellt. Die Abstandsfehler zu Referenzbarrieren liegen zwischen 4,9±1,3 und 10,3±3,6mm.
作者: MORPH    時(shí)間: 2025-3-23 14:11
Abstract: Fully Automated Deep Learning Pipeline for Adipose Tissue Segmentation on Abdominal Dixontation of abdominal fat images from 3D Dixon magnetic resonance (MR) scans – a very expensive and time-consuming process. To this end, we recently proposed Fat-SegNet [1] a fully automated pipeline to accurately segment adipose tissue inside a consistent anatomically defined abdominal region.
作者: FLORA    時(shí)間: 2025-3-23 19:30
https://doi.org/10.1007/978-3-531-91021-5ionally, an indepth analysis of the stop criterion used in the SE estimation algorithm is provided leading to the conclusion that a fixed, user-defined threshold is generally not feasible. Thus, we present new ideas how to develop a non-parametric version of the SE estimation algorithm using entropy.
作者: 加花粗鄙人    時(shí)間: 2025-3-23 22:39
https://doi.org/10.1007/978-3-531-91021-5established, it can lead to various problems because of objectivity deficiencies. In this paper, we present a proof of concept of using Artificial Neural Networks (ANN) for automatically analyzing prostate cancer tissue and rating its malignancy using tissue microarrays (TMAs) of sampled benign and malignant tissue.
作者: 造反,叛亂    時(shí)間: 2025-3-24 05:41

作者: 主動(dòng)脈    時(shí)間: 2025-3-24 07:49

作者: 莊嚴(yán)    時(shí)間: 2025-3-24 13:50
Retrospective Color Shading Correction for Endoscopic Images,ionally, an indepth analysis of the stop criterion used in the SE estimation algorithm is provided leading to the conclusion that a fixed, user-defined threshold is generally not feasible. Thus, we present new ideas how to develop a non-parametric version of the SE estimation algorithm using entropy.
作者: adjacent    時(shí)間: 2025-3-24 18:53
Neural Network for Analyzing Prostate Cancer Tissue Microarrays,established, it can lead to various problems because of objectivity deficiencies. In this paper, we present a proof of concept of using Artificial Neural Networks (ANN) for automatically analyzing prostate cancer tissue and rating its malignancy using tissue microarrays (TMAs) of sampled benign and malignant tissue.
作者: vitreous-humor    時(shí)間: 2025-3-24 22:34
Automated Segmentation of the Locus Coeruleus from Neuromelanin-Sensitive 3T MRI Using Deep Convolute whether a convolutional neural network (CNN)-based automated segmentation method allows for reliably delineating the LC in in vivo MR images. The obtained results indicate performance superior to the inter-rater agreement, i.e. approximately 70% Dice similarity coefficient (DSC).
作者: lobster    時(shí)間: 2025-3-25 03:00
Compressed Sensing for Optical Coherence Tomography Angiography Volume Generation,oach was tested on a ground truth, averaged from ten individual OCTA volumes. Average reductions of the mean squared error of 9:67% were achieved when comparing reconstructed OCTA images to the stand-alone application of a 3D median filter.
作者: palette    時(shí)間: 2025-3-25 04:48
Conference proceedings 2020 die Darstellung aktueller Forschungsergebnisse und die Vertiefung der Gespr?che zwischen Wissenschaftlern, Industrie und Anwendern. Die Beitr?ge dieses Bandes - einige davon in englischer Sprache - umfassen alle Bereiche der medizinischen Bildverarbeitung, insbesondere Bildgebung und -akquisition,
作者: Demonstrate    時(shí)間: 2025-3-25 11:23
1431-472X bung und -akquisition, Maschinelles Lernen, Bildsegmentierung und Bildanalyse, Visualisierung und Animation, Zeitreihenanalyse, Computerunterstützte Diagnose, Biomechanische Modellierung, Validierung und Qualit?tssicherung, Bildverarbeitung in der Telemedizin u.v.m.?978-3-658-29266-9978-3-658-29267-6Series ISSN 1431-472X Series E-ISSN 2628-8958
作者: Injunction    時(shí)間: 2025-3-25 14:20
https://doi.org/10.1007/978-3-658-39143-0arning approach to classify COPD and emphysema using volume-wise annotations only. We also demonstrate the impact of transfer learning on the classification of emphysema using knowledge transfer from a pre-trained COPD classification model.
作者: Ventilator    時(shí)間: 2025-3-25 15:57

作者: gratify    時(shí)間: 2025-3-25 20:09

作者: Fibroid    時(shí)間: 2025-3-26 03:40

作者: 拾落穗    時(shí)間: 2025-3-26 07:12
Retrospective Color Shading Correction for Endoscopic Images,hm based on signal envelope (SE) estimation to color images is developed using principal color components. Compared to the probably most general shading correction algorithm based on entropy minimization, SE estimation does not need any computationally expensive optimization and thus can be implemen
作者: MERIT    時(shí)間: 2025-3-26 08:36
Neural Network for Analyzing Prostate Cancer Tissue Microarrays, blood levels, trans-rectal punch biopsies of the prostate will be accomplished, while in case of higher stages of the disease the complete prostate is being surgically removed (radical prostatectomy). In both cases prostate tissue will be prepared into histological sections on glass microscope slid
作者: engrossed    時(shí)間: 2025-3-26 14:38

作者: 追蹤    時(shí)間: 2025-3-26 18:56

作者: 痛得哭了    時(shí)間: 2025-3-26 23:37

作者: 蛙鳴聲    時(shí)間: 2025-3-27 01:08
COPD Classification in CT Images Using a 3D Convolutional Neural Network,n the world. Early detection and diagnosis of COPD can increase the survival rate and reduce the risk of COPD progression in patients. Currently, the primary examination tool to diagnose COPD is spirometry. However, computed tomography (CT) is used for detecting symptoms and sub-type classification
作者: 倒轉(zhuǎn)    時(shí)間: 2025-3-27 08:42

作者: chemoprevention    時(shí)間: 2025-3-27 13:25

作者: Perceive    時(shí)間: 2025-3-27 15:43

作者: 完成    時(shí)間: 2025-3-27 19:01

作者: Additive    時(shí)間: 2025-3-27 22:58

作者: 杠桿    時(shí)間: 2025-3-28 02:56

作者: 態(tài)學(xué)    時(shí)間: 2025-3-28 07:21
Abstract: Fully Automated Deep Learning Pipeline for Adipose Tissue Segmentation on Abdominal Dixonypes represent an important risk factor of metabolic disorders. Currently, the gold standard for measuring volumes of VAT and SAT is the manual segmentation of abdominal fat images from 3D Dixon magnetic resonance (MR) scans – a very expensive and time-consuming process. To this end, we recently pro
作者: 向外才掩飾    時(shí)間: 2025-3-28 11:40
Semantic Lung Segmentation Using Convolutional Neural Networks,usually use their experience to interpret CXR images, however, there is a large interobserver variance. Computer vision may be used as a standard for assisted diagnosis. In this study, we applied an encoder-decoder neural network architecture for automatic lung region detection. We compared a three-
作者: lipoatrophy    時(shí)間: 2025-3-28 17:25

作者: anachronistic    時(shí)間: 2025-3-28 22:26
Compressed Sensing for Optical Coherence Tomography Angiography Volume Generation, tomography (OCT) scans of the retina allow the computation of motion contrast to display the retinal vasculature. To the best of our knowledge, we present the first application of compressed sensing for the generation of OCTA volumes. Using a probabilistic signal model for the computation of OCTA v
作者: commonsense    時(shí)間: 2025-3-29 00:20
https://doi.org/10.1007/978-3-531-91021-5s for mitotic figure identification - have significantly improved in recent times, potentially allowing for computer-augmented or fully automatic screening systems in the future. This trend is further supported by whole slide scanning microscopes becoming available in many pathology labs and could s
作者: Apoptosis    時(shí)間: 2025-3-29 06:15

作者: Mucosa    時(shí)間: 2025-3-29 09:09

作者: 衰老    時(shí)間: 2025-3-29 12:28
https://doi.org/10.1007/978-3-531-91021-5 blood levels, trans-rectal punch biopsies of the prostate will be accomplished, while in case of higher stages of the disease the complete prostate is being surgically removed (radical prostatectomy). In both cases prostate tissue will be prepared into histological sections on glass microscope slid
作者: Nibble    時(shí)間: 2025-3-29 18:46

作者: 紡織品    時(shí)間: 2025-3-29 23:12

作者: Dignant    時(shí)間: 2025-3-30 03:00
https://doi.org/10.1007/978-3-658-39143-0 neural networks have been applied in this field, including the successful U-Net. In this work, we firstly modify the U-Net with functional blocks aiming to pursue higher performance. The absence of the expected performance boost then lead us to dig into the opposite direction of shrinking the U-Net
作者: Esalate    時(shí)間: 2025-3-30 05:02
https://doi.org/10.1007/978-3-658-39143-0n the world. Early detection and diagnosis of COPD can increase the survival rate and reduce the risk of COPD progression in patients. Currently, the primary examination tool to diagnose COPD is spirometry. However, computed tomography (CT) is used for detecting symptoms and sub-type classification
作者: adjacent    時(shí)間: 2025-3-30 10:24
https://doi.org/10.1007/978-3-658-39143-0gmentierungsbarrieren als Nebenbedingungen helfen hierbei. Aktuell werden diese Markierungen h?ufig noch als manuelle Scribbles vom Benutzer i.d.R. mühsam schichtweise erstellt. Hier wird ein neuer vollautomatischer Ansatz zum Finden von virtuellen 3D-Barrieren mit maschinellen Lernmethoden vorgeste
作者: Delude    時(shí)間: 2025-3-30 16:01
https://doi.org/10.1007/978-3-658-39143-0al diagnostics in hematology [1]. Having been practised for well over a century, cytomorphological analysis is still today routinely performed by human examiners using optical microscopes, a process that can be tedious, time-consuming, and suffering from considerable intra-and inter-rater variabilit
作者: 威脅你    時(shí)間: 2025-3-30 19:43
https://doi.org/10.1007/978-3-658-39143-0after various surgical procedures and in different medical treatment methods. At the same time, the major psoas muscle has been has been used as a tool to assess total muscle volume. From the image processing side it has the advantage of being one of the few muscles that are not surrounded by other
作者: SCORE    時(shí)間: 2025-3-30 21:57
Post-Islamism Versus Neoconservatism,nd Parkinson’s Disease (PD). The majority of studies to date have relied on using manual segmentation methods to segment the LC, which is time consuming and leads to substantial interindividual variability across raters. Automated segmentation approaches might be less error-prone leading to a higher
作者: Abbreviate    時(shí)間: 2025-3-31 03:41

作者: antiandrogen    時(shí)間: 2025-3-31 08:04

作者: 某人    時(shí)間: 2025-3-31 10:02
https://doi.org/10.1007/978-1-349-61373-1ypes represent an important risk factor of metabolic disorders. Currently, the gold standard for measuring volumes of VAT and SAT is the manual segmentation of abdominal fat images from 3D Dixon magnetic resonance (MR) scans – a very expensive and time-consuming process. To this end, we recently pro
作者: neutrophils    時(shí)間: 2025-3-31 14:48
Islamism and Secularism in North Africausually use their experience to interpret CXR images, however, there is a large interobserver variance. Computer vision may be used as a standard for assisted diagnosis. In this study, we applied an encoder-decoder neural network architecture for automatic lung region detection. We compared a three-
作者: amygdala    時(shí)間: 2025-3-31 18:17
https://doi.org/10.1007/978-1-349-61373-1odelling of dynamic contrast-enhanced (DCE) MRI data and apparent diffusion coefficient calculations. There are many fitting tools available, however most of them are limited to a special purpose and do not allow for own development and extension.
作者: HPA533    時(shí)間: 2025-3-31 21:55
https://doi.org/10.1007/978-1-349-61373-1 tomography (OCT) scans of the retina allow the computation of motion contrast to display the retinal vasculature. To the best of our knowledge, we present the first application of compressed sensing for the generation of OCTA volumes. Using a probabilistic signal model for the computation of OCTA v
作者: 斜谷    時(shí)間: 2025-4-1 05:30

作者: transdermal    時(shí)間: 2025-4-1 06:05





歡迎光臨 派博傳思國(guó)際中心 (http://www.pjsxioz.cn/) Powered by Discuz! X3.5
嘉禾县| 哈巴河县| 镇安县| 全州县| 庆云县| 西畴县| 静乐县| 三明市| 汪清县| 泰顺县| 化州市| 东兰县| 米易县| 自贡市| 济南市| 胶南市| 阿克陶县| 米泉市| 凤凰县| 乾安县| 昭苏县| 淮阳县| 东山县| 阿尔山市| 正宁县| 英山县| 开鲁县| 拉孜县| 南昌县| 呈贡县| 榆树市| 镇平县| 巧家县| 麻阳| 昌邑市| 万年县| 德保县| 屏东县| 彭水| 额尔古纳市| 洱源县|