標題: Titlebook: Bifurcation Dynamics of a Damped Parametric Pendulum; Yu Guo,Albert C. J. Luo Book 2020 Springer Nature Switzerland AG 2020 [打印本頁] 作者: 葉子 時間: 2025-3-21 20:03
書目名稱Bifurcation Dynamics of a Damped Parametric Pendulum影響因子(影響力)
書目名稱Bifurcation Dynamics of a Damped Parametric Pendulum影響因子(影響力)學科排名
書目名稱Bifurcation Dynamics of a Damped Parametric Pendulum網(wǎng)絡(luò)公開度
書目名稱Bifurcation Dynamics of a Damped Parametric Pendulum網(wǎng)絡(luò)公開度學科排名
書目名稱Bifurcation Dynamics of a Damped Parametric Pendulum被引頻次
書目名稱Bifurcation Dynamics of a Damped Parametric Pendulum被引頻次學科排名
書目名稱Bifurcation Dynamics of a Damped Parametric Pendulum年度引用
書目名稱Bifurcation Dynamics of a Damped Parametric Pendulum年度引用學科排名
書目名稱Bifurcation Dynamics of a Damped Parametric Pendulum讀者反饋
書目名稱Bifurcation Dynamics of a Damped Parametric Pendulum讀者反饋學科排名
作者: 遠地點 時間: 2025-3-21 21:09 作者: 使困惑 時間: 2025-3-22 04:10
Travelable Periodic Motions, the pendulum. Using such fictitious functions, we can easily observe the motion complexity of angular displacement, and the coefficient .>0 in the fictitious function is arbitrarily chosen. Without loss of generality, for the Fourier series of velocity, the symbols for harmonic amplitudes and phase作者: 最高峰 時間: 2025-3-22 05:33
2573-3168 . The non-travelable and travelable periodic motions on the bifurcation trees are discovered. Through the bifurcation trees of travelable and non-travelable per978-3-031-79644-9978-3-031-79645-6Series ISSN 2573-3168 Series E-ISSN 2573-3176 作者: ALIEN 時間: 2025-3-22 09:13 作者: neuron 時間: 2025-3-22 14:26
https://doi.org/10.1007/978-94-009-3861-8non-polynomial dynamical systems. The parametric pendulum will be as an example to be investigated, and the corresponding methodology and results can help one understand motion complexity in nonlinear dynamical systems. A parametric pendulum system is very simple but it possesses rich and complicate作者: PANIC 時間: 2025-3-22 19:21 作者: NAV 時間: 2025-3-22 23:43 作者: 的’ 時間: 2025-3-23 04:58
Excitation Functions With Finite Rise Time,riodic motion can be expressed by discrete points through discrete mappings of continuous dynamical systems. The method is stated through the following theorem. From Luo [48], we have the following theorem.作者: 堅毅 時間: 2025-3-23 05:53
Diffus verteiltes interstellares Gas,arametrically excited pendulum. The stability and bifurcations of periodic motions are also illustrated through eigenvalue analysis. The solid and dashed curves represent the stable and unstable motions, respectively. The black and red colors are for paired asymmetric motions. The acronyms “SN” and 作者: Pert敏捷 時間: 2025-3-23 10:18
Diffus verteiltes interstellares Gas,ions to chaos. In order to avoid abundant illustrations, other harmonic characteristics for period-5, period-6, period-8, period-10, and period-12 motions are not presented. The corresponding bifurcation trees are presented through harmonic frequency-amplitude curves of periodic node displacements m作者: 租約 時間: 2025-3-23 16:10
H. J. Goldschmidt D.Sc., F.Inst.P., F.I.M.y. In all plots, the trajectories of periodic motions will be presented both numerically and analytically. To demonstrate harmonic effects on periodic motions, harmonic amplitudes and phases of periodic motions are presented. Numerical and analytical results will be presented by solid curves and hol作者: 切掉 時間: 2025-3-23 18:31 作者: Ordeal 時間: 2025-3-23 22:44
Bifurcation Dynamics of a Damped Parametric Pendulum978-3-031-79645-6Series ISSN 2573-3168 Series E-ISSN 2573-3176 作者: 考博 時間: 2025-3-24 03:23 作者: 健壯 時間: 2025-3-24 08:18 作者: 微塵 時間: 2025-3-24 13:54
Discretization of a Parametric Pendulum,In this chapter, a semi-analytical method will be employed for periodic motions in the parametrically driven pendulum system through implicit discrete mappings. The implicit discrete mapping structures of periodic motions will be developed, and eigenvalue analysis will be used for the corresponding stability and bifurcation analysis.作者: obtuse 時間: 2025-3-24 16:24 作者: Grating 時間: 2025-3-24 19:30 作者: 舊石器 時間: 2025-3-25 01:44 作者: 種類 時間: 2025-3-25 06:02
Diffus verteiltes interstellares Gas,“PD” represent the saddle-node and period-doubling bifurcations, respectively. The symmetric and asymmetric periodic motions are labeled by “S” and “A”, respectively. All bifurcations trees are predicted with varying excitation frequency Ω. Other parameters are chosen as作者: 大漩渦 時間: 2025-3-25 10:24 作者: STALL 時間: 2025-3-25 13:17
2573-3168 derstand the complex world...Even though the parametrically excited pendulum is one of the simplest nonlinear systems, until now, complex motions in such a parametric pendulum cannot be achieved. In this book, the bifurcation dynamics of periodic motions to chaos in a damped, parametrically excited 作者: 煤渣 時間: 2025-3-25 17:56
Book 2020he complex world...Even though the parametrically excited pendulum is one of the simplest nonlinear systems, until now, complex motions in such a parametric pendulum cannot be achieved. In this book, the bifurcation dynamics of periodic motions to chaos in a damped, parametrically excited pendulum i作者: BAN 時間: 2025-3-25 23:19
Bifurcation Trees,“PD” represent the saddle-node and period-doubling bifurcations, respectively. The symmetric and asymmetric periodic motions are labeled by “S” and “A”, respectively. All bifurcations trees are predicted with varying excitation frequency Ω. Other parameters are chosen as作者: BOOR 時間: 2025-3-26 02:39
Harmonic Frequency-Amplitude Characteristics,od. for non-travelable periodic motions. For the travelable period-m motions, the harmonic analysis of periodic node velocities are presented. Because of . the periodic node displacements cannot be used for the harmonic analysis of the periodic motions.作者: Coterminous 時間: 2025-3-26 06:58 作者: SLING 時間: 2025-3-26 09:28 作者: BYRE 時間: 2025-3-26 15:28
Introduction,st nonlinear systems. This is because the inherent complex dynamics of the parametrically excited pendulum helps one better understand the complex world. However, until now, complex motions in the parametrical pendulum cannot be achieved yet through the traditional analysis. What are the mechanism a作者: Veneer 時間: 2025-3-26 16:52 作者: 軍火 時間: 2025-3-26 21:14
Bifurcation Trees,arametrically excited pendulum. The stability and bifurcations of periodic motions are also illustrated through eigenvalue analysis. The solid and dashed curves represent the stable and unstable motions, respectively. The black and red colors are for paired asymmetric motions. The acronyms “SN” and 作者: linear 時間: 2025-3-27 02:33
Harmonic Frequency-Amplitude Characteristics,ions to chaos. In order to avoid abundant illustrations, other harmonic characteristics for period-5, period-6, period-8, period-10, and period-12 motions are not presented. The corresponding bifurcation trees are presented through harmonic frequency-amplitude curves of periodic node displacements m作者: progestogen 時間: 2025-3-27 09:05
Non-Travelable Periodic Motions,y. In all plots, the trajectories of periodic motions will be presented both numerically and analytically. To demonstrate harmonic effects on periodic motions, harmonic amplitudes and phases of periodic motions are presented. Numerical and analytical results will be presented by solid curves and hol作者: arthrodesis 時間: 2025-3-27 12:09 作者: 誰在削木頭 時間: 2025-3-27 14:04
9樓作者: 考古學 時間: 2025-3-27 20:38
9樓作者: 保留 時間: 2025-3-27 23:22
9樓作者: bourgeois 時間: 2025-3-28 06:01
9樓作者: Small-Intestine 時間: 2025-3-28 06:33
10樓作者: 乳白光 時間: 2025-3-28 13:39
10樓作者: PAEAN 時間: 2025-3-28 15:22
10樓作者: Expand 時間: 2025-3-28 20:28
10樓