派博傳思國際中心

標題: Titlebook: Bifurcation Dynamics of a Damped Parametric Pendulum; Yu Guo,Albert C. J. Luo Book 2020 Springer Nature Switzerland AG 2020 [打印本頁]

作者: 葉子    時間: 2025-3-21 20:03
書目名稱Bifurcation Dynamics of a Damped Parametric Pendulum影響因子(影響力)




書目名稱Bifurcation Dynamics of a Damped Parametric Pendulum影響因子(影響力)學科排名




書目名稱Bifurcation Dynamics of a Damped Parametric Pendulum網(wǎng)絡(luò)公開度




書目名稱Bifurcation Dynamics of a Damped Parametric Pendulum網(wǎng)絡(luò)公開度學科排名




書目名稱Bifurcation Dynamics of a Damped Parametric Pendulum被引頻次




書目名稱Bifurcation Dynamics of a Damped Parametric Pendulum被引頻次學科排名




書目名稱Bifurcation Dynamics of a Damped Parametric Pendulum年度引用




書目名稱Bifurcation Dynamics of a Damped Parametric Pendulum年度引用學科排名




書目名稱Bifurcation Dynamics of a Damped Parametric Pendulum讀者反饋




書目名稱Bifurcation Dynamics of a Damped Parametric Pendulum讀者反饋學科排名





作者: 遠地點    時間: 2025-3-21 21:09

作者: 使困惑    時間: 2025-3-22 04:10
Travelable Periodic Motions, the pendulum. Using such fictitious functions, we can easily observe the motion complexity of angular displacement, and the coefficient .>0 in the fictitious function is arbitrarily chosen. Without loss of generality, for the Fourier series of velocity, the symbols for harmonic amplitudes and phase
作者: 最高峰    時間: 2025-3-22 05:33
2573-3168 . The non-travelable and travelable periodic motions on the bifurcation trees are discovered. Through the bifurcation trees of travelable and non-travelable per978-3-031-79644-9978-3-031-79645-6Series ISSN 2573-3168 Series E-ISSN 2573-3176
作者: ALIEN    時間: 2025-3-22 09:13

作者: neuron    時間: 2025-3-22 14:26
https://doi.org/10.1007/978-94-009-3861-8non-polynomial dynamical systems. The parametric pendulum will be as an example to be investigated, and the corresponding methodology and results can help one understand motion complexity in nonlinear dynamical systems. A parametric pendulum system is very simple but it possesses rich and complicate
作者: PANIC    時間: 2025-3-22 19:21

作者: NAV    時間: 2025-3-22 23:43

作者: 的’    時間: 2025-3-23 04:58
Excitation Functions With Finite Rise Time,riodic motion can be expressed by discrete points through discrete mappings of continuous dynamical systems. The method is stated through the following theorem. From Luo [48], we have the following theorem.
作者: 堅毅    時間: 2025-3-23 05:53
Diffus verteiltes interstellares Gas,arametrically excited pendulum. The stability and bifurcations of periodic motions are also illustrated through eigenvalue analysis. The solid and dashed curves represent the stable and unstable motions, respectively. The black and red colors are for paired asymmetric motions. The acronyms “SN” and
作者: Pert敏捷    時間: 2025-3-23 10:18
Diffus verteiltes interstellares Gas,ions to chaos. In order to avoid abundant illustrations, other harmonic characteristics for period-5, period-6, period-8, period-10, and period-12 motions are not presented. The corresponding bifurcation trees are presented through harmonic frequency-amplitude curves of periodic node displacements m
作者: 租約    時間: 2025-3-23 16:10
H. J. Goldschmidt D.Sc., F.Inst.P., F.I.M.y. In all plots, the trajectories of periodic motions will be presented both numerically and analytically. To demonstrate harmonic effects on periodic motions, harmonic amplitudes and phases of periodic motions are presented. Numerical and analytical results will be presented by solid curves and hol
作者: 切掉    時間: 2025-3-23 18:31

作者: Ordeal    時間: 2025-3-23 22:44
Bifurcation Dynamics of a Damped Parametric Pendulum978-3-031-79645-6Series ISSN 2573-3168 Series E-ISSN 2573-3176
作者: 考博    時間: 2025-3-24 03:23

作者: 健壯    時間: 2025-3-24 08:18

作者: 微塵    時間: 2025-3-24 13:54
Discretization of a Parametric Pendulum,In this chapter, a semi-analytical method will be employed for periodic motions in the parametrically driven pendulum system through implicit discrete mappings. The implicit discrete mapping structures of periodic motions will be developed, and eigenvalue analysis will be used for the corresponding stability and bifurcation analysis.
作者: obtuse    時間: 2025-3-24 16:24

作者: Grating    時間: 2025-3-24 19:30

作者: 舊石器    時間: 2025-3-25 01:44

作者: 種類    時間: 2025-3-25 06:02
Diffus verteiltes interstellares Gas,“PD” represent the saddle-node and period-doubling bifurcations, respectively. The symmetric and asymmetric periodic motions are labeled by “S” and “A”, respectively. All bifurcations trees are predicted with varying excitation frequency Ω. Other parameters are chosen as
作者: 大漩渦    時間: 2025-3-25 10:24

作者: STALL    時間: 2025-3-25 13:17
2573-3168 derstand the complex world...Even though the parametrically excited pendulum is one of the simplest nonlinear systems, until now, complex motions in such a parametric pendulum cannot be achieved. In this book, the bifurcation dynamics of periodic motions to chaos in a damped, parametrically excited
作者: 煤渣    時間: 2025-3-25 17:56
Book 2020he complex world...Even though the parametrically excited pendulum is one of the simplest nonlinear systems, until now, complex motions in such a parametric pendulum cannot be achieved. In this book, the bifurcation dynamics of periodic motions to chaos in a damped, parametrically excited pendulum i
作者: BAN    時間: 2025-3-25 23:19
Bifurcation Trees,“PD” represent the saddle-node and period-doubling bifurcations, respectively. The symmetric and asymmetric periodic motions are labeled by “S” and “A”, respectively. All bifurcations trees are predicted with varying excitation frequency Ω. Other parameters are chosen as
作者: BOOR    時間: 2025-3-26 02:39
Harmonic Frequency-Amplitude Characteristics,od. for non-travelable periodic motions. For the travelable period-m motions, the harmonic analysis of periodic node velocities are presented. Because of . the periodic node displacements cannot be used for the harmonic analysis of the periodic motions.
作者: Coterminous    時間: 2025-3-26 06:58

作者: SLING    時間: 2025-3-26 09:28

作者: BYRE    時間: 2025-3-26 15:28
Introduction,st nonlinear systems. This is because the inherent complex dynamics of the parametrically excited pendulum helps one better understand the complex world. However, until now, complex motions in the parametrical pendulum cannot be achieved yet through the traditional analysis. What are the mechanism a
作者: Veneer    時間: 2025-3-26 16:52

作者: 軍火    時間: 2025-3-26 21:14
Bifurcation Trees,arametrically excited pendulum. The stability and bifurcations of periodic motions are also illustrated through eigenvalue analysis. The solid and dashed curves represent the stable and unstable motions, respectively. The black and red colors are for paired asymmetric motions. The acronyms “SN” and
作者: linear    時間: 2025-3-27 02:33
Harmonic Frequency-Amplitude Characteristics,ions to chaos. In order to avoid abundant illustrations, other harmonic characteristics for period-5, period-6, period-8, period-10, and period-12 motions are not presented. The corresponding bifurcation trees are presented through harmonic frequency-amplitude curves of periodic node displacements m
作者: progestogen    時間: 2025-3-27 09:05
Non-Travelable Periodic Motions,y. In all plots, the trajectories of periodic motions will be presented both numerically and analytically. To demonstrate harmonic effects on periodic motions, harmonic amplitudes and phases of periodic motions are presented. Numerical and analytical results will be presented by solid curves and hol
作者: arthrodesis    時間: 2025-3-27 12:09

作者: 誰在削木頭    時間: 2025-3-27 14:04
9樓
作者: 考古學    時間: 2025-3-27 20:38
9樓
作者: 保留    時間: 2025-3-27 23:22
9樓
作者: bourgeois    時間: 2025-3-28 06:01
9樓
作者: Small-Intestine    時間: 2025-3-28 06:33
10樓
作者: 乳白光    時間: 2025-3-28 13:39
10樓
作者: PAEAN    時間: 2025-3-28 15:22
10樓
作者: Expand    時間: 2025-3-28 20:28
10樓




歡迎光臨 派博傳思國際中心 (http://www.pjsxioz.cn/) Powered by Discuz! X3.5
塔河县| 斗六市| 永川市| 齐河县| 抚顺县| 牡丹江市| 广汉市| 砀山县| 陇西县| 肥城市| 磐石市| 宁津县| 沭阳县| 汶上县| 抚远县| 泰州市| 木兰县| 龙南县| 东安县| 泉州市| 闽侯县| 金湖县| 绥芬河市| 长白| 克拉玛依市| 咸宁市| 饶阳县| 武定县| 沁阳市| 怀安县| 黔西县| 五莲县| 灵台县| 桐城市| 曲麻莱县| 墨脱县| 土默特右旗| 贡觉县| 简阳市| 双江| 泽州县|