派博傳思國際中心

標(biāo)題: Titlebook: Beginning MLOps with MLFlow; Deploy Models in AWS Sridhar Alla,Suman Kalyan Adari Book 2021 Sridhar Alla, Suman Kalyan Adari 2021 Machine L [打印本頁]

作者: LH941    時間: 2025-3-21 19:41
書目名稱Beginning MLOps with MLFlow影響因子(影響力)




書目名稱Beginning MLOps with MLFlow影響因子(影響力)學(xué)科排名




書目名稱Beginning MLOps with MLFlow網(wǎng)絡(luò)公開度




書目名稱Beginning MLOps with MLFlow網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Beginning MLOps with MLFlow被引頻次




書目名稱Beginning MLOps with MLFlow被引頻次學(xué)科排名




書目名稱Beginning MLOps with MLFlow年度引用




書目名稱Beginning MLOps with MLFlow年度引用學(xué)科排名




書目名稱Beginning MLOps with MLFlow讀者反饋




書目名稱Beginning MLOps with MLFlow讀者反饋學(xué)科排名





作者: evince    時間: 2025-3-21 20:39

作者: 不要嚴(yán)酷    時間: 2025-3-22 02:23
Introduction to MLFlow, will cover how you can integrate MLFlow with scikit-learn, TensorFlow 2.0+/Keras, PyTorch, and PySpark. We will go over experiment creation; metric, parameter, and artifact logging; model logging; and how you can deploy models on a local server and query them for predictions.
作者: 推遲    時間: 2025-3-22 06:48

作者: ALIBI    時間: 2025-3-22 11:44

作者: Melanocytes    時間: 2025-3-22 14:55

作者: Arb853    時間: 2025-3-22 17:32
Manar Alohaly,Hassan Takabi,Eduardo BlancoIn this chapter, we will cover how you can operationalize your MLFlow models using AWS SageMaker. We will cover how you can upload your runs to S3 storage, how you can build and push an MLFlow Docker container image to AWS, and how you can deploy your model, query it, update the model once it is deployed, and remove a deployed model.
作者: anarchist    時間: 2025-3-22 21:58

作者: effrontery    時間: 2025-3-23 02:39

作者: 柱廊    時間: 2025-3-23 05:53
Getting Started: Data Analysis,In this chapter, we will go over the premise of the problem we are attempting to solve with the machine learning solution we want to operationalize. We will also begin data analysis and feature engineering of our data set.
作者: Arroyo    時間: 2025-3-23 12:20

作者: antidote    時間: 2025-3-23 16:39

作者: 管理員    時間: 2025-3-23 19:47

作者: 辯論    時間: 2025-3-24 01:12

作者: 說明    時間: 2025-3-24 05:25

作者: NORM    時間: 2025-3-24 10:24
Zheng Cheng,Jean-Claude Royer,Massimo Tisi will cover how you can integrate MLFlow with scikit-learn, TensorFlow 2.0+/Keras, PyTorch, and PySpark. We will go over experiment creation; metric, parameter, and artifact logging; model logging; and how you can deploy models on a local server and query them for predictions.
作者: 昆蟲    時間: 2025-3-24 11:52

作者: 心胸開闊    時間: 2025-3-24 15:41

作者: AWRY    時間: 2025-3-24 21:58

作者: 危機(jī)    時間: 2025-3-25 01:14
978-1-4842-6548-2Sridhar Alla, Suman Kalyan Adari 2021
作者: 規(guī)章    時間: 2025-3-25 04:44

作者: Camouflage    時間: 2025-3-25 11:17
deploy models with AWS SageMaker, Google Cloud, and MicrosofIntegrate MLOps principles into existing or future projects using MLFlow, operationalize your models, and deploy them in AWS SageMaker, Google Cloud, and Microsoft Azure. ?This book guides you through the process of data analysis, model con
作者: Integrate    時間: 2025-3-25 15:35
Book 2021graphs, and models. You will be guided through the process of deploying and querying your models with AWS SageMaker, Google Cloud, and Microsoft Azure. And you will learn how to integrate your MLOps setups using Databricks.. ..What You Will Learn..Perform basic data analysis and construct models in
作者: Demulcent    時間: 2025-3-25 16:00

作者: 做方舟    時間: 2025-3-25 23:55
7樓
作者: Vertical    時間: 2025-3-26 03:15
7樓
作者: 商店街    時間: 2025-3-26 06:16
7樓
作者: Coma704    時間: 2025-3-26 08:27
7樓
作者: 反對    時間: 2025-3-26 13:25
8樓
作者: 噱頭    時間: 2025-3-26 20:38
8樓
作者: instructive    時間: 2025-3-26 22:53
8樓
作者: 壓碎    時間: 2025-3-27 02:47
9樓
作者: 易達(dá)到    時間: 2025-3-27 07:27
9樓
作者: 費(fèi)解    時間: 2025-3-27 11:47
9樓
作者: conspicuous    時間: 2025-3-27 17:40
9樓
作者: 幻影    時間: 2025-3-27 21:46
10樓
作者: 腐蝕    時間: 2025-3-28 01:33
10樓
作者: saturated-fat    時間: 2025-3-28 04:48
10樓
作者: Alcove    時間: 2025-3-28 06:52
10樓




歡迎光臨 派博傳思國際中心 (http://www.pjsxioz.cn/) Powered by Discuz! X3.5
新巴尔虎右旗| 巍山| 北碚区| 墨竹工卡县| 蓬莱市| 辛集市| 永和县| 慈利县| 旺苍县| 仁怀市| 天峨县| 荥经县| 上蔡县| 奉新县| 遵化市| 汾阳市| 嵩明县| 香河县| 虹口区| 大厂| 绩溪县| 英超| 福海县| 高安市| 合作市| 淳化县| 台州市| 额敏县| 富裕县| 万州区| 略阳县| 达拉特旗| 蓝山县| 东源县| 西乡县| 凯里市| 阳信县| 崇礼县| 龙州县| 龙口市| 嘉定区|