標(biāo)題: Titlebook: Basic Linear Algebra; T. S. Blyth,E. F. Robertson Textbook 2002Latest edition Springer-Verlag London Limited 2002 Algebra.Non-linear algeb [打印本頁(yè)] 作者: Fatuous 時(shí)間: 2025-3-21 16:22
書目名稱Basic Linear Algebra影響因子(影響力)
書目名稱Basic Linear Algebra影響因子(影響力)學(xué)科排名
書目名稱Basic Linear Algebra網(wǎng)絡(luò)公開(kāi)度
書目名稱Basic Linear Algebra網(wǎng)絡(luò)公開(kāi)度學(xué)科排名
書目名稱Basic Linear Algebra被引頻次
書目名稱Basic Linear Algebra被引頻次學(xué)科排名
書目名稱Basic Linear Algebra年度引用
書目名稱Basic Linear Algebra年度引用學(xué)科排名
書目名稱Basic Linear Algebra讀者反饋
書目名稱Basic Linear Algebra讀者反饋學(xué)科排名
作者: Bone-Scan 時(shí)間: 2025-3-22 00:15 作者: TOM 時(shí)間: 2025-3-22 02:01 作者: ventilate 時(shí)間: 2025-3-22 08:31
Computer Assistance,e been developed specifically for this purpose. In this chapter we give a brief introduction, by way of a tutorial, to the package ‘LinearAlgebra’ in MAPLE 7. Having mastered the techniques, the reader may freely check some of the answers to previous questions!作者: 寬度 時(shí)間: 2025-3-22 10:13 作者: 提升 時(shí)間: 2025-3-22 13:25 作者: 秘密會(huì)議 時(shí)間: 2025-3-22 18:52
T. S. Blyth,E. F. RobertsonA comprehensive introduction aimed at first-year students, with detailed explanations and fully-worked examples.Features additional exercises and new material on Cramer‘s rule.Includes a new chapter o作者: 隼鷹 時(shí)間: 2025-3-22 23:41 作者: Gleason-score 時(shí)間: 2025-3-23 02:33 作者: 籠子 時(shí)間: 2025-3-23 07:13 作者: 聯(lián)想記憶 時(shí)間: 2025-3-23 13:34 作者: 我沒(méi)有強(qiáng)迫 時(shí)間: 2025-3-23 14:02
Patenterg?nzung 1969 bis September 1976We shall now give brief descriptions of some situations to which matrix theory finds a natural application, and some problems to which the solutions are determined by the algebra that we have developed. Some of these applications will be dealt with in greater detail in later chapters.作者: synchronous 時(shí)間: 2025-3-23 18:10
Teste zur Prüfung von HerbizidenWe shall now consider in some detail a systematic method of solving systems of linear equations. In working with such systems, there are three basic operations involved:作者: antiquated 時(shí)間: 2025-3-23 23:22
Teste zur Prüfung von HerbizidenIn Theorem 1.3 we showed that every . x . matrix . has an additive inverse, denoted by ? ., which is the unique . x . matrix . that satisfies the equation . + . = 0. We shall now consider the multiplicative analogue of this.作者: drusen 時(shí)間: 2025-3-24 02:36 作者: 雄辯 時(shí)間: 2025-3-24 10:11 作者: Mast-Cell 時(shí)間: 2025-3-24 14:06
https://doi.org/10.1007/978-3-7091-0592-4We shall now proceed to show how a linear mapping from one finite-dimensional vector space to another can be represented by a matrix. For this purpose, we require the following notion.作者: Generic-Drug 時(shí)間: 2025-3-24 16:33
Die Lichttherapie in der polnischen MedizinIn what follows it will be convenient to write an . × . matrix . in the form . where, as before, . represents the .-th column of .. Also, the letter . will signify either the field IR of real numbers or the field ? of complex numbers.作者: entice 時(shí)間: 2025-3-24 21:06 作者: gratify 時(shí)間: 2025-3-25 00:38
The Algebra of Matrices,If . and . are positive intergers then by a . . . ., or an . x ., we shall mean a rectangular array consisting of . numbers in a boxed display consisting of . rows and . columns. Simple examples of such objects are the following:.In general we shall display an . x . matrix as作者: 有常識(shí) 時(shí)間: 2025-3-25 06:06 作者: BET 時(shí)間: 2025-3-25 09:50 作者: ambivalence 時(shí)間: 2025-3-25 13:03
Invertible Matrices,In Theorem 1.3 we showed that every . x . matrix . has an additive inverse, denoted by ? ., which is the unique . x . matrix . that satisfies the equation . + . = 0. We shall now consider the multiplicative analogue of this.作者: HARP 時(shí)間: 2025-3-25 15:56
Vector Spaces,In order to proceed further with matrices we have to take a wider view of matters. This we do through the following important notion.作者: 武器 時(shí)間: 2025-3-25 22:15
Linear Mappings,In the study of any algebraic structure there are two concepts that are of paramount importance. The first is that of a . (i.e. a subset with the same type of structure), and the second is that of a . (i.e. a mapping from one structure to another of the same kind that is ‘structure-preserving’).作者: 座右銘 時(shí)間: 2025-3-26 01:49 作者: Herd-Immunity 時(shí)間: 2025-3-26 06:58
Determinants,In what follows it will be convenient to write an . × . matrix . in the form . where, as before, . represents the .-th column of .. Also, the letter . will signify either the field IR of real numbers or the field ? of complex numbers.作者: 翅膀拍動(dòng) 時(shí)間: 2025-3-26 11:06 作者: 沖突 時(shí)間: 2025-3-26 16:04
Die Lichttherapie in der polnischen Medizin what conditions an . × . matrix is similar to a diagonal matrix. In so doing we shall draw together all of the notions that have been previously developed. Unless otherwise specified, . will denote an . × . matrix over IR or ?.作者: Exclaim 時(shí)間: 2025-3-26 18:15
Herbst-/Winterdepression und Lichttherapiebe subject to error. The use of a computer is therefore called for. As far as computation in algebra is concerned, there are several packages that have been developed specifically for this purpose. In this chapter we give a brief introduction, by way of a tutorial, to the package ‘LinearAlgebra’ in 作者: Iatrogenic 時(shí)間: 2025-3-26 22:10
Eigenvalues and Eigenvectors, what conditions an . × . matrix is similar to a diagonal matrix. In so doing we shall draw together all of the notions that have been previously developed. Unless otherwise specified, . will denote an . × . matrix over IR or ?.作者: 放縱 時(shí)間: 2025-3-27 02:02
Eigenvalues and Eigenvectors, what conditions an . × . matrix is similar to a diagonal matrix. In so doing we shall draw together all of the notions that have been previously developed. Unless otherwise specified, . will denote an . × . matrix over IR or ?.作者: Filibuster 時(shí)間: 2025-3-27 06:01 作者: 費(fèi)解 時(shí)間: 2025-3-27 10:12
1615-2085 e ofparticular interest to readers: this will take the form of a tutorial on the use of the "LinearAlgebra" package in MAPLE 7 and will deal with all the aspects of linear algebra developed within the book.978-1-85233-662-2978-1-4471-0681-4Series ISSN 1615-2085 Series E-ISSN 2197-4144 作者: 破譯 時(shí)間: 2025-3-27 13:53 作者: 解開(kāi) 時(shí)間: 2025-3-27 19:30
6樓作者: Countermand 時(shí)間: 2025-3-28 01:40
6樓作者: Aggressive 時(shí)間: 2025-3-28 02:33
6樓作者: 發(fā)炎 時(shí)間: 2025-3-28 09:57
7樓作者: Magnitude 時(shí)間: 2025-3-28 12:34
7樓作者: LINES 時(shí)間: 2025-3-28 18:04
7樓作者: septicemia 時(shí)間: 2025-3-28 20:55
7樓作者: 刻苦讀書 時(shí)間: 2025-3-29 01:20
8樓作者: Radiation 時(shí)間: 2025-3-29 06:07
8樓作者: 軟弱 時(shí)間: 2025-3-29 07:44
8樓作者: Infelicity 時(shí)間: 2025-3-29 13:21
9樓作者: Exaggerate 時(shí)間: 2025-3-29 19:25
9樓作者: 斷斷續(xù)續(xù) 時(shí)間: 2025-3-29 22:58
9樓作者: 凝結(jié)劑 時(shí)間: 2025-3-30 00:46
9樓作者: profligate 時(shí)間: 2025-3-30 04:05
10樓作者: Gobble 時(shí)間: 2025-3-30 08:44
10樓作者: NOCT 時(shí)間: 2025-3-30 14:10
10樓作者: acquisition 時(shí)間: 2025-3-30 18:07
10樓