派博傳思國際中心

標(biāo)題: Titlebook: Basic Concepts of Algebraic Topology; Fred H. Croom Textbook 1978 Springer-Verlag New York 1978 Algebra.Basic.Derivation.Manifold.Morphism [打印本頁]

作者: VIRAL    時(shí)間: 2025-3-21 18:05
書目名稱Basic Concepts of Algebraic Topology影響因子(影響力)




書目名稱Basic Concepts of Algebraic Topology影響因子(影響力)學(xué)科排名




書目名稱Basic Concepts of Algebraic Topology網(wǎng)絡(luò)公開度




書目名稱Basic Concepts of Algebraic Topology網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Basic Concepts of Algebraic Topology被引頻次




書目名稱Basic Concepts of Algebraic Topology被引頻次學(xué)科排名




書目名稱Basic Concepts of Algebraic Topology年度引用




書目名稱Basic Concepts of Algebraic Topology年度引用學(xué)科排名




書目名稱Basic Concepts of Algebraic Topology讀者反饋




書目名稱Basic Concepts of Algebraic Topology讀者反饋學(xué)科排名





作者: strain    時(shí)間: 2025-3-21 21:39

作者: 柔軟    時(shí)間: 2025-3-22 01:44

作者: hyperuricemia    時(shí)間: 2025-3-22 07:41

作者: 剝皮    時(shí)間: 2025-3-22 11:24

作者: Acquired    時(shí)間: 2025-3-22 16:28

作者: anchor    時(shí)間: 2025-3-22 21:08

作者: G-spot    時(shí)間: 2025-3-23 01:08
The Higher Homotopy Groups,tal group was recognized early in the development of algebraic topology. Definitions of these “higher homotopy groups” were given in the years 1932–1935 by Eduard Cech (1893–1960) and Witold Hurewicz (1904–1956). It was Hurewicz who gave the most satisfactory definition and proved the fundamental properties.
作者: 難解    時(shí)間: 2025-3-23 02:04
The Fundamental Group, that two closed paths in a space are homotopic provided that each of them can be “continuously deformed into the other.” In Figure 4.1, for example, paths . and . are homotopic to each other and . is homotopic to a constant path. Path . is not homotopic to either . or . since neither . nor . can be pulled across the hole that they enclose.
作者: 裁決    時(shí)間: 2025-3-23 06:59

作者: erythema    時(shí)間: 2025-3-23 11:05
Duplex Unwinding with DEAD-Box Proteins, that two closed paths in a space are homotopic provided that each of them can be “continuously deformed into the other.” In Figure 4.1, for example, paths . and . are homotopic to each other and . is homotopic to a constant path. Path . is not homotopic to either . or . since neither . nor . can be pulled across the hole that they enclose.
作者: 飛鏢    時(shí)間: 2025-3-23 17:15

作者: 有雜色    時(shí)間: 2025-3-23 19:41
,Chain Statistics — Helical Wormlike Chains,Topology is an abstraction of geometry; it deals with sets having a structure which permits the definition of continuity for functions and a concept of “closeness” of points and sets. This structure, called the “topology” on the set, was originally determined from the properties of open sets in Euclidean spaces, particularly the Euclidean plane.
作者: conquer    時(shí)間: 2025-3-24 01:40

作者: Relinquish    時(shí)間: 2025-3-24 04:37
Single-Molecule Studies of RecBCD,This chapter is designed to show the power of the fundamental group. We shall consider a class of mappings ., called “covering projections,” from a “covering space” . to a “base space” . to which we can extend the Covering Homotopy Property discussed in Chapter 4. Precise definitions are given in the next section.
作者: CRUDE    時(shí)間: 2025-3-24 08:22
Geometric Complexes and Polyhedra,Topology is an abstraction of geometry; it deals with sets having a structure which permits the definition of continuity for functions and a concept of “closeness” of points and sets. This structure, called the “topology” on the set, was originally determined from the properties of open sets in Euclidean spaces, particularly the Euclidean plane.
作者: fringe    時(shí)間: 2025-3-24 14:02
Simplicial Homology Groups,Having defined polyhedron, complex, and orientation for complexes in the preceding chapter, we are now ready for the precise definition of the homology groups. Intuitively speaking, the homology groups of a complex describe the arrangement of the simplexes in the complex thereby telling us about the “holes” in the associated polyhedron.
作者: 出來    時(shí)間: 2025-3-24 18:08
Covering Spaces,This chapter is designed to show the power of the fundamental group. We shall consider a class of mappings ., called “covering projections,” from a “covering space” . to a “base space” . to which we can extend the Covering Homotopy Property discussed in Chapter 4. Precise definitions are given in the next section.
作者: Oration    時(shí)間: 2025-3-24 19:11
https://doi.org/10.1007/978-1-4684-9475-4Algebra; Basic; Derivation; Manifold; Morphism; Topology; theorem
作者: Grasping    時(shí)間: 2025-3-25 00:31
Springer-Verlag New York 1978
作者: 定點(diǎn)    時(shí)間: 2025-3-25 07:00

作者: 釋放    時(shí)間: 2025-3-25 07:31
Duplex Unwinding with DEAD-Box Proteins, that two closed paths in a space are homotopic provided that each of them can be “continuously deformed into the other.” In Figure 4.1, for example, paths . and . are homotopic to each other and . is homotopic to a constant path. Path . is not homotopic to either . or . since neither . nor . can be
作者: 冥界三河    時(shí)間: 2025-3-25 11:43
https://doi.org/10.1007/978-3-662-53168-6the first homology group is completely determined by the fundamental group. For this reason, the need for higher dimensional analogues of the fundamental group was recognized early in the development of algebraic topology. Definitions of these “higher homotopy groups” were given in the years 1932–19
作者: 容易生皺紋    時(shí)間: 2025-3-25 17:23
Introduction to Helicene Chemistrynce they apply to more spaces. The process of extending homology to spaces more general than polyhedra began in the years 1921–1933 and has continued to the present day. The pioneers in this work were Oswald Veblen, Solomon Lefschetz, Leopold Vietoris, and Eduard ?ech. In this chapter we shall exami
作者: 無政府主義者    時(shí)間: 2025-3-25 22:08
0172-6056 opology and some familiarity with vector spaces. Outlines of the prerequisite material can be found in the appendices at the end of the text. It is suggested th978-1-4684-9475-4Series ISSN 0172-6056 Series E-ISSN 2197-5604
作者: Physiatrist    時(shí)間: 2025-3-26 00:24

作者: 懸掛    時(shí)間: 2025-3-26 04:41

作者: 壁畫    時(shí)間: 2025-3-26 10:17

作者: 傻    時(shí)間: 2025-3-26 13:48

作者: 沐浴    時(shí)間: 2025-3-26 17:24

作者: Incorruptible    時(shí)間: 2025-3-26 22:46

作者: expound    時(shí)間: 2025-3-27 03:31

作者: ablate    時(shí)間: 2025-3-27 09:07
Eye-Tracking Metrics as an Indicator of Workload in Commercial Single-Pilot Operationserent areas of interest. These results suggest that particularly the temporal demand requires adequate support for a possible transition to SPO. The eye-tracking metrics support results obtained from subjective workload ratings.
作者: 匍匐前進(jìn)    時(shí)間: 2025-3-27 10:55

作者: Ebct207    時(shí)間: 2025-3-27 15:34

作者: 是限制    時(shí)間: 2025-3-27 18:50
Koordinaten dialektischer KonstruktionGeschichte. Die Einheit der Welt ist nicht als Einheit von nur graduell verschiedenen Selbigen, sondern als Einheit von wesensm??ig Unterschiedenen zu begreifen; nur unter dieser Voraussetzung ist die ?Grundfrage der Philosophie?, die ja von der Gegebenheit zweier . Seinsweisen — Sein und Bewu?tsein
作者: 懸崖    時(shí)間: 2025-3-27 22:08

作者: NAUT    時(shí)間: 2025-3-28 05:53

作者: 大約冬季    時(shí)間: 2025-3-28 10:15
Virtual Research Domains Management on L2 Optical Private Networkt network switching, and sophisticated access control and monitoring. In this paper, we introduce L2 OPN architecture and describe our experience in implementing L2 OPN. Lastly, we address the function and framework ofVirtual Research Domains Management over L2 OPN.




歡迎光臨 派博傳思國際中心 (http://www.pjsxioz.cn/) Powered by Discuz! X3.5
炉霍县| 沙河市| 叶城县| 丹巴县| 富锦市| 阿拉善盟| 灌云县| 西林县| 察隅县| 德保县| 浦县| 陇南市| 普洱| 阿克苏市| 肥西县| 女性| 大姚县| 新郑市| 固阳县| 景宁| 荣昌县| 灌云县| 湘潭市| 大同市| 北海市| 博乐市| 胶南市| 叶城县| 东海县| 九江市| 蓝田县| 长岛县| 子长县| 互助| 鹤岗市| 韶关市| 元谋县| 邛崃市| 沐川县| 碌曲县| 平凉市|