標題: Titlebook: Basic Analytic Number Theory; Anatolij A. Karatsuba,Melvyn B. Nathanson Book 1993 Springer-Verlag Berlin Heidelberg 1993 Analytic Number T [打印本頁] 作者: mobility 時間: 2025-3-21 16:59
書目名稱Basic Analytic Number Theory影響因子(影響力)
書目名稱Basic Analytic Number Theory影響因子(影響力)學(xué)科排名
書目名稱Basic Analytic Number Theory網(wǎng)絡(luò)公開度
書目名稱Basic Analytic Number Theory網(wǎng)絡(luò)公開度學(xué)科排名
書目名稱Basic Analytic Number Theory被引頻次
書目名稱Basic Analytic Number Theory被引頻次學(xué)科排名
書目名稱Basic Analytic Number Theory年度引用
書目名稱Basic Analytic Number Theory年度引用學(xué)科排名
書目名稱Basic Analytic Number Theory讀者反饋
書目名稱Basic Analytic Number Theory讀者反饋學(xué)科排名
作者: 繁榮地區(qū) 時間: 2025-3-21 22:28 作者: bibliophile 時間: 2025-3-22 03:35
Information Systems and Data Compression . .>0 and.An application of the Theorem on the density distribution of the zeros of the zeta function in the critical strip enables us to obtain a much stronger result (cf. the corollary of Theorem 2).作者: debris 時間: 2025-3-22 07:54
Dimensionality Reduction and Quantizatione numbers in an arithmetic progression with difference .≥ 1 and initial term ., where 1≤ .≤ . and(.)=1. This problem is important not only because it generalizes a classical result, but also because it has exceptional importance for the solution of many additive problems in prime number theory (for 作者: FAST 時間: 2025-3-22 09:47
Dimensionality Reduction and Quantizationnecting the sum of values of the function Λ. over the integers lying in a given arithmetic progression with the zeros of an L-function. This explicit formula together with a theorem on the boundary of the zeros of the .-function will yield the prime number theorem for arithmetic progressions. We sha作者: 共和國 時間: 2025-3-22 15:25 作者: 障礙物 時間: 2025-3-22 20:58 作者: 填滿 時間: 2025-3-22 23:21
Dimensionality Reduction and QuantizationIn this chapter we consider two fundamental problems in the theory of integer points: Gauss’s problem on the number of integer points inside a circle, and the Dirichlet divisor problem. We shall assume that a Cartesian coordinate (.) system has been defined on the plane.作者: osteocytes 時間: 2025-3-23 01:23
Lossless Compression of InformationThis chapter provides background information from the theory of entire functions that will be used later in the book.作者: 反話 時間: 2025-3-23 08:27 作者: 混亂生活 時間: 2025-3-23 13:10 作者: 骨 時間: 2025-3-23 16:35 作者: Amnesty 時間: 2025-3-23 18:36 作者: dithiolethione 時間: 2025-3-24 00:44
Integer Points,In this chapter we consider two fundamental problems in the theory of integer points: Gauss’s problem on the number of integer points inside a circle, and the Dirichlet divisor problem. We shall assume that a Cartesian coordinate (.) system has been defined on the plane.作者: Epidural-Space 時間: 2025-3-24 05:11
Entire Functions of Finite Order,This chapter provides background information from the theory of entire functions that will be used later in the book.作者: 徹底明白 時間: 2025-3-24 09:38
The Euler Gamma Function,The Euler gamma function . is defined by the equation.where . is Euler’s constant.作者: Lasting 時間: 2025-3-24 11:17
The Riemann Zeta Function,For Re . 1, the.is defined by.It follows from the definition that ζ(s) is an analytic function in the half-plane Re . > 1.作者: reaching 時間: 2025-3-24 18:10 作者: 大洪水 時間: 2025-3-24 19:35 作者: 檢查 時間: 2025-3-25 01:11 作者: inferno 時間: 2025-3-25 03:55
Prime Numbers in Arithmetic Progressions,necting the sum of values of the function Λ. over the integers lying in a given arithmetic progression with the zeros of an L-function. This explicit formula together with a theorem on the boundary of the zeros of the .-function will yield the prime number theorem for arithmetic progressions. We shall always assume below that . ≤ ..作者: averse 時間: 2025-3-25 09:28 作者: 心神不寧 時間: 2025-3-25 15:12
,Waring’s Problem,f the solvability in natural numbers .., ..,…,.. of the equation.where . ≥3 and .(.) (Waring’s problem). Waring’s problem generalizes Lagrange’s theorem that every natural number is the sum of four squares.作者: 水汽 時間: 2025-3-25 17:38
http://image.papertrans.cn/b/image/180955.jpg作者: MOCK 時間: 2025-3-25 22:07 作者: 不確定 時間: 2025-3-26 02:21 作者: crumble 時間: 2025-3-26 06:11 作者: Countermand 時間: 2025-3-26 10:21 作者: detach 時間: 2025-3-26 13:16 作者: 改進 時間: 2025-3-26 19:04 作者: 精美食品 時間: 2025-3-27 00:52 作者: FLIRT 時間: 2025-3-27 03:55
Dirichlet L-Functions,e numbers in an arithmetic progression with difference .≥ 1 and initial term ., where 1≤ .≤ . and(.)=1. This problem is important not only because it generalizes a classical result, but also because it has exceptional importance for the solution of many additive problems in prime number theory (for 作者: canonical 時間: 2025-3-27 08:31 作者: 束縛 時間: 2025-3-27 13:28 作者: incarcerate 時間: 2025-3-27 16:54
,Waring’s Problem,f the solvability in natural numbers .., ..,…,.. of the equation.where . ≥3 and .(.) (Waring’s problem). Waring’s problem generalizes Lagrange’s theorem that every natural number is the sum of four squares.作者: 或者發(fā)神韻 時間: 2025-3-27 19:01
Book 1993English edition, the author has considerably rewritten Chapter I, and has corrected various typographical and other minor errors throughout the the text. August, 1991 Melvyn B. Nathanson Introduction to the English Edition It gives me great pleasure that Springer-Verlag is publishing an English tran作者: octogenarian 時間: 2025-3-28 00:07
. For the English edition, the author has considerably rewritten Chapter I, and has corrected various typographical and other minor errors throughout the the text. August, 1991 Melvyn B. Nathanson Introduction to the English Edition It gives me great pleasure that Springer-Verlag is publishing an En作者: IOTA 時間: 2025-3-28 03:21 作者: 中和 時間: 2025-3-28 10:08 作者: intelligible 時間: 2025-3-28 11:04
8樓作者: Chemotherapy 時間: 2025-3-28 16:53
8樓作者: 和平 時間: 2025-3-28 20:29
9樓作者: CODE 時間: 2025-3-29 02:29
9樓作者: 高貴領(lǐng)導(dǎo) 時間: 2025-3-29 04:36
9樓作者: 團結(jié) 時間: 2025-3-29 09:24
9樓作者: 鄙視讀作 時間: 2025-3-29 14:43
10樓作者: angina-pectoris 時間: 2025-3-29 16:59
10樓作者: 壓迫 時間: 2025-3-29 21:10
10樓作者: critic 時間: 2025-3-30 03:53
10樓