派博傳思國際中心

標題: Titlebook: Basic Analytic Number Theory; Anatolij A. Karatsuba,Melvyn B. Nathanson Book 1993 Springer-Verlag Berlin Heidelberg 1993 Analytic Number T [打印本頁]

作者: mobility    時間: 2025-3-21 16:59
書目名稱Basic Analytic Number Theory影響因子(影響力)




書目名稱Basic Analytic Number Theory影響因子(影響力)學(xué)科排名




書目名稱Basic Analytic Number Theory網(wǎng)絡(luò)公開度




書目名稱Basic Analytic Number Theory網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Basic Analytic Number Theory被引頻次




書目名稱Basic Analytic Number Theory被引頻次學(xué)科排名




書目名稱Basic Analytic Number Theory年度引用




書目名稱Basic Analytic Number Theory年度引用學(xué)科排名




書目名稱Basic Analytic Number Theory讀者反饋




書目名稱Basic Analytic Number Theory讀者反饋學(xué)科排名





作者: 繁榮地區(qū)    時間: 2025-3-21 22:28

作者: bibliophile    時間: 2025-3-22 03:35
Information Systems and Data Compression . .>0 and.An application of the Theorem on the density distribution of the zeros of the zeta function in the critical strip enables us to obtain a much stronger result (cf. the corollary of Theorem 2).
作者: debris    時間: 2025-3-22 07:54
Dimensionality Reduction and Quantizatione numbers in an arithmetic progression with difference .≥ 1 and initial term ., where 1≤ .≤ . and(.)=1. This problem is important not only because it generalizes a classical result, but also because it has exceptional importance for the solution of many additive problems in prime number theory (for
作者: FAST    時間: 2025-3-22 09:47
Dimensionality Reduction and Quantizationnecting the sum of values of the function Λ. over the integers lying in a given arithmetic progression with the zeros of an L-function. This explicit formula together with a theorem on the boundary of the zeros of the .-function will yield the prime number theorem for arithmetic progressions. We sha
作者: 共和國    時間: 2025-3-22 15:25

作者: 障礙物    時間: 2025-3-22 20:58

作者: 填滿    時間: 2025-3-22 23:21
Dimensionality Reduction and QuantizationIn this chapter we consider two fundamental problems in the theory of integer points: Gauss’s problem on the number of integer points inside a circle, and the Dirichlet divisor problem. We shall assume that a Cartesian coordinate (.) system has been defined on the plane.
作者: osteocytes    時間: 2025-3-23 01:23
Lossless Compression of InformationThis chapter provides background information from the theory of entire functions that will be used later in the book.
作者: 反話    時間: 2025-3-23 08:27

作者: 混亂生活    時間: 2025-3-23 13:10

作者: 骨    時間: 2025-3-23 16:35

作者: Amnesty    時間: 2025-3-23 18:36

作者: dithiolethione    時間: 2025-3-24 00:44
Integer Points,In this chapter we consider two fundamental problems in the theory of integer points: Gauss’s problem on the number of integer points inside a circle, and the Dirichlet divisor problem. We shall assume that a Cartesian coordinate (.) system has been defined on the plane.
作者: Epidural-Space    時間: 2025-3-24 05:11
Entire Functions of Finite Order,This chapter provides background information from the theory of entire functions that will be used later in the book.
作者: 徹底明白    時間: 2025-3-24 09:38
The Euler Gamma Function,The Euler gamma function . is defined by the equation.where . is Euler’s constant.
作者: Lasting    時間: 2025-3-24 11:17
The Riemann Zeta Function,For Re . 1, the.is defined by.It follows from the definition that ζ(s) is an analytic function in the half-plane Re . > 1.
作者: reaching    時間: 2025-3-24 18:10

作者: 大洪水    時間: 2025-3-24 19:35

作者: 檢查    時間: 2025-3-25 01:11

作者: inferno    時間: 2025-3-25 03:55
Prime Numbers in Arithmetic Progressions,necting the sum of values of the function Λ. over the integers lying in a given arithmetic progression with the zeros of an L-function. This explicit formula together with a theorem on the boundary of the zeros of the .-function will yield the prime number theorem for arithmetic progressions. We shall always assume below that . ≤ ..
作者: averse    時間: 2025-3-25 09:28

作者: 心神不寧    時間: 2025-3-25 15:12
,Waring’s Problem,f the solvability in natural numbers .., ..,…,.. of the equation.where . ≥3 and .(.) (Waring’s problem). Waring’s problem generalizes Lagrange’s theorem that every natural number is the sum of four squares.
作者: 水汽    時間: 2025-3-25 17:38
http://image.papertrans.cn/b/image/180955.jpg
作者: MOCK    時間: 2025-3-25 22:07

作者: 不確定    時間: 2025-3-26 02:21

作者: crumble    時間: 2025-3-26 06:11

作者: Countermand    時間: 2025-3-26 10:21

作者: detach    時間: 2025-3-26 13:16

作者: 改進    時間: 2025-3-26 19:04

作者: 精美食品    時間: 2025-3-27 00:52

作者: FLIRT    時間: 2025-3-27 03:55
Dirichlet L-Functions,e numbers in an arithmetic progression with difference .≥ 1 and initial term ., where 1≤ .≤ . and(.)=1. This problem is important not only because it generalizes a classical result, but also because it has exceptional importance for the solution of many additive problems in prime number theory (for
作者: canonical    時間: 2025-3-27 08:31

作者: 束縛    時間: 2025-3-27 13:28

作者: incarcerate    時間: 2025-3-27 16:54
,Waring’s Problem,f the solvability in natural numbers .., ..,…,.. of the equation.where . ≥3 and .(.) (Waring’s problem). Waring’s problem generalizes Lagrange’s theorem that every natural number is the sum of four squares.
作者: 或者發(fā)神韻    時間: 2025-3-27 19:01
Book 1993English edition, the author has considerably rewritten Chapter I, and has corrected various typographical and other minor errors throughout the the text. August, 1991 Melvyn B. Nathanson Introduction to the English Edition It gives me great pleasure that Springer-Verlag is publishing an English tran
作者: octogenarian    時間: 2025-3-28 00:07
. For the English edition, the author has considerably rewritten Chapter I, and has corrected various typographical and other minor errors throughout the the text. August, 1991 Melvyn B. Nathanson Introduction to the English Edition It gives me great pleasure that Springer-Verlag is publishing an En
作者: IOTA    時間: 2025-3-28 03:21

作者: 中和    時間: 2025-3-28 10:08

作者: intelligible    時間: 2025-3-28 11:04
8樓
作者: Chemotherapy    時間: 2025-3-28 16:53
8樓
作者: 和平    時間: 2025-3-28 20:29
9樓
作者: CODE    時間: 2025-3-29 02:29
9樓
作者: 高貴領(lǐng)導(dǎo)    時間: 2025-3-29 04:36
9樓
作者: 團結(jié)    時間: 2025-3-29 09:24
9樓
作者: 鄙視讀作    時間: 2025-3-29 14:43
10樓
作者: angina-pectoris    時間: 2025-3-29 16:59
10樓
作者: 壓迫    時間: 2025-3-29 21:10
10樓
作者: critic    時間: 2025-3-30 03:53
10樓




歡迎光臨 派博傳思國際中心 (http://www.pjsxioz.cn/) Powered by Discuz! X3.5
中西区| 原阳县| SHOW| 山东省| 东丽区| 辽中县| 永嘉县| 永寿县| 南岸区| 杨浦区| 日喀则市| 林口县| 元谋县| 巴彦淖尔市| 吴川市| 天气| 宣城市| 新宁县| 定州市| 弥勒县| 临城县| 兴海县| 宜城市| 图木舒克市| 房山区| 额敏县| 云浮市| 涞源县| 福安市| 云阳县| 陵水| 邮箱| 承德市| 城固县| 和林格尔县| 曲阜市| 湖口县| 安乡县| 绥阳县| 雅安市| 民丰县|