標題: Titlebook: Banach Algebras and Several Complex Variables; John Wermer Textbook 19762nd edition Springer Science+Business Media New York 1976 Banach.B [打印本頁] 作者: lumbar-puncture 時間: 2025-3-21 16:29
書目名稱Banach Algebras and Several Complex Variables影響因子(影響力)
書目名稱Banach Algebras and Several Complex Variables影響因子(影響力)學科排名
書目名稱Banach Algebras and Several Complex Variables網(wǎng)絡(luò)公開度
書目名稱Banach Algebras and Several Complex Variables網(wǎng)絡(luò)公開度學科排名
書目名稱Banach Algebras and Several Complex Variables被引頻次
書目名稱Banach Algebras and Several Complex Variables被引頻次學科排名
書目名稱Banach Algebras and Several Complex Variables年度引用
書目名稱Banach Algebras and Several Complex Variables年度引用學科排名
書目名稱Banach Algebras and Several Complex Variables讀者反饋
書目名稱Banach Algebras and Several Complex Variables讀者反饋學科排名
作者: 榨取 時間: 2025-3-21 21:05
0072-5285 ems have been solved. Throughout, our aim has been to make the exposition elementary and self-contained. We have cheerfully sacrificed generality and completene978-1-4757-3878-0Series ISSN 0072-5285 Series E-ISSN 2197-5612 作者: 明智的人 時間: 2025-3-22 03:35 作者: 瑣事 時間: 2025-3-22 07:34
https://doi.org/10.1007/978-3-322-91747-8 generators for the algebra . Here we shall study the case when ? = .(.) the disk algebra, and more generally the case ? = .(.) where . is the closed ball in C..and .(.) consists of all functions continuous in . and analytic in ..作者: 壟斷 時間: 2025-3-22 12:26 作者: muffler 時間: 2025-3-22 13:02 作者: NAIVE 時間: 2025-3-22 20:08 作者: 口訣法 時間: 2025-3-22 21:36 作者: Agility 時間: 2025-3-23 05:07 作者: 罵人有污點 時間: 2025-3-23 09:29
https://doi.org/10.1007/978-3-663-13327-8Let ? denote the algebra of all function . on –π≤θ≤π, with 作者: 巨頭 時間: 2025-3-23 11:27
Beispiel einer Packungsgestaltung,The proofs of all lemmas in this section are left as exercises.作者: otic-capsule 時間: 2025-3-23 15:42 作者: BARGE 時間: 2025-3-23 21:23
https://doi.org/10.1007/978-3-662-49210-9As before, fix an open set Ω ? C.. Given . ∈ ∧.(Ω), we seek . ∈ ∧. such that ..作者: Albinism 時間: 2025-3-23 22:46 作者: 善于 時間: 2025-3-24 05:25 作者: Musculoskeletal 時間: 2025-3-24 08:05
Andreas Diekmann,Wojtek PrzepiorkaLet . be a compact space and ? an algebra of continous complex-valued functions on . which separates the points of ..作者: EXUDE 時間: 2025-3-24 12:11 作者: 愛得痛了 時間: 2025-3-24 15:13
https://doi.org/10.1007/978-3-531-19907-8Let . denote the closed unit disk and consider the algebra .(.).作者: 無王時期, 時間: 2025-3-24 21:37
Perspektiven der WirtschaftssoziologieLet . be a domain in . and let .. be an algebra of analytic functions on .. Assume that .. separates points on . and contains the constants.作者: Cytology 時間: 2025-3-25 02:59 作者: anaerobic 時間: 2025-3-25 05:00
Wirtschaft als funktionales TeilsystemAs the two-dimensional analogue of an are in .., we take a disk in .. defined as follows. Let . be the closed unit disk in the ζ-plane and let ..,…, .. be continuous functions defined on .. Assume that the map ζ → (..(ζ),…, ..(ζ)) is one to one on .. The image . of . under this map we call a . in ...作者: 閑逛 時間: 2025-3-25 08:53
https://doi.org/10.1007/978-3-531-90905-9Given Banach algebras ?. and ?. with maximal ideal spaces .. and .., if ?. and ?. are isomorphic as algebras, then .. and .. are homeomorphic. It is thus to be expected that the topology of . (?) is reflected in the algebraic structure of ?, for an arbitrary Banach algebra ?.作者: 玉米棒子 時間: 2025-3-25 12:58 作者: podiatrist 時間: 2025-3-25 19:33
https://doi.org/10.1007/978-3-642-90965-8Let . be a compact set in .. which lies on a smooth .-dimensional (real) submanifold ∑ of ... Assume that . is polynomially convex. Under what conditions on ∑ can we conclude that .?作者: compel 時間: 2025-3-25 22:18
https://doi.org/10.1007/978-3-662-32915-3In Sections 13, 14 and 17 we have studied polynomial approximation on certain kinds of .-dimensional manifolds in C.. In this Section we consider the case . Let ∑ be a .-dimensional submanifold of an open set in C. with .. Let . be a compact set which lies on ∑ and contains a relatively open subset of ∑.作者: Leaven 時間: 2025-3-26 01:45
Preliminaries and Notations,Let . be a compact Hausdorff space.作者: COST 時間: 2025-3-26 05:00 作者: endarterectomy 時間: 2025-3-26 09:09
Operational Calculus in One Variable,Let ? denote the algebra of all function . on –π≤θ≤π, with 作者: acetylcholine 時間: 2025-3-26 12:57 作者: 有惡臭 時間: 2025-3-26 17:12 作者: Amylase 時間: 2025-3-27 00:09
The Equation ,u = ,,As before, fix an open set Ω ? C.. Given . ∈ ∧.(Ω), we seek . ∈ ∧. such that ..作者: 容易生皺紋 時間: 2025-3-27 02:30
,The Oka—Weil Theorem,Let . be a compact set in the .-plane and denote by .(.) the uniform closure on . of the polynomials in ..作者: 使迷醉 時間: 2025-3-27 06:30
Operational Calculus in Several Variables,We wish to extend the operational calculus established in Section 3 to functions of several variables. Let ? be a Banach algebra and x.,., x. ∈ ?. If . is a polynomial in . variables . it is natural to define 作者: 得意牛 時間: 2025-3-27 12:37 作者: crockery 時間: 2025-3-27 16:05
,Maximality and Radó’s Theorem,Let . be a compact space and ? a uniform algebra on .. Denote by || || the uniform norm on .(.). Note that if x, y ∈ ?, then x +? ∈.(.), so that ||x + ?|| is defined.作者: nauseate 時間: 2025-3-27 20:48 作者: Mundane 時間: 2025-3-27 23:43
Algebras of Analytic Functions,Let . be a domain in . and let .. be an algebra of analytic functions on .. Assume that .. separates points on . and contains the constants.作者: instructive 時間: 2025-3-28 03:53 作者: CANT 時間: 2025-3-28 09:35 作者: FILTH 時間: 2025-3-28 11:10 作者: orthodox 時間: 2025-3-28 16:05 作者: 不規(guī)則的跳動 時間: 2025-3-28 21:01 作者: Eulogy 時間: 2025-3-29 02:06 作者: 凹處 時間: 2025-3-29 05:42 作者: 粗魯?shù)娜?nbsp; 時間: 2025-3-29 10:45 作者: 幼稚 時間: 2025-3-29 12:30 作者: forager 時間: 2025-3-29 16:35 作者: 善辯 時間: 2025-3-29 22:39
Springer Science+Business Media New York 1976作者: 興奮過度 時間: 2025-3-30 02:53
7樓作者: cloture 時間: 2025-3-30 08:02
7樓作者: BUST 時間: 2025-3-30 10:54
7樓作者: Antecedent 時間: 2025-3-30 13:43
7樓作者: osteocytes 時間: 2025-3-30 19:05
8樓作者: CIS 時間: 2025-3-30 22:30
8樓作者: instate 時間: 2025-3-31 01:25
8樓作者: 不自然 時間: 2025-3-31 07:52
9樓作者: 解凍 時間: 2025-3-31 09:51
9樓作者: Binge-Drinking 時間: 2025-3-31 14:52
9樓作者: cataract 時間: 2025-3-31 19:59
9樓作者: BYRE 時間: 2025-3-31 23:43
10樓作者: extinct 時間: 2025-4-1 03:05
10樓作者: 終點 時間: 2025-4-1 09:46
10樓作者: 得意牛 時間: 2025-4-1 12:43
10樓