派博傳思國際中心

標題: Titlebook: Automorphisms of Affine Spaces; Arno Essen Book 1995 Springer Science+Business Media B.V. 1995 Dimension.Grad.algebraic group.algorithms.d [打印本頁]

作者: 故障    時間: 2025-3-21 18:19
書目名稱Automorphisms of Affine Spaces影響因子(影響力)




書目名稱Automorphisms of Affine Spaces影響因子(影響力)學科排名




書目名稱Automorphisms of Affine Spaces網(wǎng)絡公開度




書目名稱Automorphisms of Affine Spaces網(wǎng)絡公開度學科排名




書目名稱Automorphisms of Affine Spaces被引頻次




書目名稱Automorphisms of Affine Spaces被引頻次學科排名




書目名稱Automorphisms of Affine Spaces年度引用




書目名稱Automorphisms of Affine Spaces年度引用學科排名




書目名稱Automorphisms of Affine Spaces讀者反饋




書目名稱Automorphisms of Affine Spaces讀者反饋學科排名





作者: sacrum    時間: 2025-3-21 21:52
The Jacobian Conjecture: Some Steps towards Solutionneous polynomial mapping. We present recent contributions to the problem, among others we show why the answer is positive for maps ., when . has only non-negative coefficients. We also point out the Global Stability Problem for polynomial transformations of ?., when n > 2 (note that for .. mappings
作者: 混雜人    時間: 2025-3-22 00:29

作者: 沙漠    時間: 2025-3-22 04:33
Polyomorphisms Conjugate to Dilations . variables (.., .., ... , ..) = . ∈ ?.. The question, first raised by O.-H. Keller in 1939 [10] for polynomials over the integers but now also raised for complex polynomials and, as such, known as . (.), asks whether a . map . with nonzero constant Jacobian determinant det .(.) need be a .: I.e.,
作者: Coronation    時間: 2025-3-22 12:06

作者: MULTI    時間: 2025-3-22 16:51

作者: Mortal    時間: 2025-3-22 18:06
Quotients of Algebraic Group Actionsespect is “Geometric Invariant Theory” of Mumford (see [15]). The major part of the book only concerns reductive groups. More recently some work has been done to do similar things for general algebraic groups (see [8], [5], [6], [7] and [4]).
作者: Repatriate    時間: 2025-3-23 00:06
A Note on Nagata’s Automorphisme Bruhat decomposition at the level of the jacobian of the transformations involved and the product rules of double classes, we show that certain types of factorizations are impossible for this automorphism.
作者: ARCH    時間: 2025-3-23 05:12
Golden Years of Australian Radio Astronomymorphic to the group .[.] of automorphisms . of the polynomial ring ?[.] by means of the correspondence .(.) = . where .(..) = ..(.). Polynomial maps .(.) satisfying det .(.) = . ≠ 0 are called .. We can and do assume that .(0) = 0 and .(0) = .. Five main problems arise:
作者: 真    時間: 2025-3-23 09:19

作者: 殘忍    時間: 2025-3-23 11:11
Seven Lectures on Polynomial Automorphismsrs and ?:= the complex numbers. Furthermore . will denote an arbitrary field and . = (.., ..., ..): .. → .. a . i.e. a map of the form . where each .. belongs to the polynomial ring .[.]: = .[.., ..., ..].
作者: Mumble    時間: 2025-3-23 15:17

作者: Estrogen    時間: 2025-3-23 21:44

作者: CLAY    時間: 2025-3-23 23:29

作者: 和音    時間: 2025-3-24 04:58
https://doi.org/10.1007/978-1-349-08810-2rs and ?:= the complex numbers. Furthermore . will denote an arbitrary field and . = (.., ..., ..): .. → .. a . i.e. a map of the form . where each .. belongs to the polynomial ring .[.]: = .[.., ..., ..].
作者: Kidnap    時間: 2025-3-24 06:40

作者: Ventilator    時間: 2025-3-24 13:41
Historical & Cultural Astronomy i.e., which are not conjugate to linear automorphisms. The second author gave the first examples of non-linearizable actions of positive dimensional groups, and . and . did the same for finite groups..These examples were all obtained from non-trivial .-vector bundles on representation spaces using
作者: JOT    時間: 2025-3-24 18:43

作者: 纖細    時間: 2025-3-24 21:20
https://doi.org/10.1007/978-3-658-20915-5racteristic. This opinion is based on the well known counter-example . = . ? .. of a polynomial in one indeterminate . over the prime field F. of cardinality . > 0, whose derivate is 1 and who does not define an automorphism of the F.-algebra F.[.]. But we could remark that the geometric degree of .
作者: 反復無常    時間: 2025-3-25 00:15

作者: ANIM    時間: 2025-3-25 04:31
,Goldsmith’s Singularities and Merits,espect is “Geometric Invariant Theory” of Mumford (see [15]). The major part of the book only concerns reductive groups. More recently some work has been done to do similar things for general algebraic groups (see [8], [5], [6], [7] and [4]).
作者: addition    時間: 2025-3-25 08:43
Sang-Jin Kim,Federica Brandizzie Bruhat decomposition at the level of the jacobian of the transformations involved and the product rules of double classes, we show that certain types of factorizations are impossible for this automorphism.
作者: Isthmus    時間: 2025-3-25 11:56

作者: Foreshadow    時間: 2025-3-25 18:13
Development of the Wild-Type Goldfish,The so called . or . (MYC(n)) is as follows:.If . ∈ ..(?., ?.) satisfies the so called Markus — Yamabe Condition, i.e. for all . ∈ ?. all eigenvalues of . (.) have a negative real part and if .(0) = 0, then 0 is a global attractor of the ODE
作者: Servile    時間: 2025-3-25 21:58
https://doi.org/10.1007/978-3-662-32950-4I would like to express my deep gratitude to the participants and to the organizers of the Cura?ao Conference on Polynomial Maps for creating a very pleasant and stimulating atmosphere, without which this paper could not be written, and, especially, to Arno van den Essen, without whose efforts the conference would not be possible.
作者: Aggregate    時間: 2025-3-26 00:10
https://doi.org/10.1007/978-3-662-32950-4We begin by summarizing some results from [2].
作者: Conserve    時間: 2025-3-26 07:27

作者: Ptsd429    時間: 2025-3-26 08:40

作者: enmesh    時間: 2025-3-26 12:41
https://doi.org/10.1007/978-981-15-9720-6This article is primarily concerned with questions of tameness and triangulability for certain polynomial automorphisms, and is divided into two parts. . examines one-parameter subgroups of the group of affine automorphisms; . discusses how triangular automorphisms may be resolved when viewed as Cremona transformations.
作者: chance    時間: 2025-3-26 19:40
Global Injectivity of Polynomial Maps Via Vector FieldsThis paper deals with the Real Jacobian Problem (RJP) and the Markus Yamabe Conjecture (MYC) for polynomial vector fields. We prove injectivity for a big subclass of vector fields. Concerning the MYC we get some partial results also for a big subclass of polynomial vector fields.
作者: 駁船    時間: 2025-3-27 00:53
On the Markus-Yamabe ConjectureThe so called . or . (MYC(n)) is as follows:.If . ∈ ..(?., ?.) satisfies the so called Markus — Yamabe Condition, i.e. for all . ∈ ?. all eigenvalues of . (.) have a negative real part and if .(0) = 0, then 0 is a global attractor of the ODE
作者: 多樣    時間: 2025-3-27 04:23

作者: 放棄    時間: 2025-3-27 05:38

作者: 哎呦    時間: 2025-3-27 10:38

作者: 橡子    時間: 2025-3-27 15:38
An Algorithm that Determines whether a Polynomial Map is BijectiveOne of the central problems in the study of polynomial maps is the determination of the bijective ones. Although there are many results in the literature on this subject, they can not be used on polynomial maps of high degrees due to memory limitation or the complexity of the algorithm.
作者: integrated    時間: 2025-3-27 21:24

作者: Delude    時間: 2025-3-27 21:59

作者: 間接    時間: 2025-3-28 03:41
978-90-481-4566-9Springer Science+Business Media B.V. 1995
作者: 純樸    時間: 2025-3-28 09:00
https://doi.org/10.1007/978-1-349-08810-2rs and ?:= the complex numbers. Furthermore . will denote an arbitrary field and . = (.., ..., ..): .. → .. a . i.e. a map of the form . where each .. belongs to the polynomial ring .[.]: = .[.., ..., ..].
作者: 宏偉    時間: 2025-3-28 14:10
,Goldsmith’s Singularities and Merits,espect is “Geometric Invariant Theory” of Mumford (see [15]). The major part of the book only concerns reductive groups. More recently some work has been done to do similar things for general algebraic groups (see [8], [5], [6], [7] and [4]).
作者: Cytology    時間: 2025-3-28 16:17
Sang-Jin Kim,Federica Brandizzie Bruhat decomposition at the level of the jacobian of the transformations involved and the product rules of double classes, we show that certain types of factorizations are impossible for this automorphism.
作者: BINGE    時間: 2025-3-28 20:04
Book 1995obian, Markus-Yamabe,Linearization and tame generators conjectures. Group actions anddynamical systems play a dominant role. Several contributions are ofan expository nature, containing the latest results obtained by theleaders in the field. The book also contains a concise introduction tothe subjec
作者: mydriatic    時間: 2025-3-29 00:46

作者: Decibel    時間: 2025-3-29 06:31
On Separable Algebras over a U.F.D. and the Jacobian Conjecture in Any Characteristicin the right and universal formulation of the classical Jacobian conjecture for the automorphisms of the algebras of polynomials in any number of polynomials over any domain of any characteristic (see its precise statement in 3.1).
作者: 教義    時間: 2025-3-29 10:40

作者: gait-cycle    時間: 2025-3-29 13:25

作者: 禮節(jié)    時間: 2025-3-29 16:19
, real Jacobian, Markus-Yamabe,Linearization and tame generators conjectures. Group actions anddynamical systems play a dominant role. Several contributions are ofan expository nature, containing the latest results obtained by theleaders in the field. The book also contains a concise introduction to
作者: BLUSH    時間: 2025-3-29 22:03

作者: 生存環(huán)境    時間: 2025-3-30 00:40
https://doi.org/10.1007/978-1-349-23093-8ddings of the additive group .. in ..(?), in other words with algebraic (sometimes referred to as rational or polynomial) actions of .. on complex affine affine space. Throughout this report, all group actions on varieties are assumed to be algebraic (i.e. the orbit of any regular function spans a finite dimensional complex vector space).
作者: 積云    時間: 2025-3-30 04:34

作者: 文藝    時間: 2025-3-30 11:06
Algebraic Aspects of Additive Group Actions on Complex Affine Spaceddings of the additive group .. in ..(?), in other words with algebraic (sometimes referred to as rational or polynomial) actions of .. on complex affine affine space. Throughout this report, all group actions on varieties are assumed to be algebraic (i.e. the orbit of any regular function spans a finite dimensional complex vector space).
作者: forebear    時間: 2025-3-30 15:06

作者: champaign    時間: 2025-3-30 16:52

作者: BIDE    時間: 2025-3-31 00:28
9樓
作者: 馬具    時間: 2025-3-31 03:09
10樓
作者: CHURL    時間: 2025-3-31 06:13
10樓
作者: GUISE    時間: 2025-3-31 11:31
10樓
作者: 經(jīng)典    時間: 2025-3-31 16:45
10樓




歡迎光臨 派博傳思國際中心 (http://www.pjsxioz.cn/) Powered by Discuz! X3.5
阿坝县| 原平市| 平阴县| 元谋县| 衡东县| 沽源县| 卓尼县| 祥云县| 池州市| 剑阁县| 渝中区| 沽源县| 门头沟区| 沧州市| 宣武区| 安顺市| 德昌县| 会理县| 顺平县| 且末县| 云南省| 射阳县| 读书| 偃师市| 桂林市| 长宁区| 尼勒克县| 万州区| 故城县| 平江县| 鄱阳县| 江华| 福鼎市| 新竹县| 襄樊市| 青铜峡市| 永州市| 富蕴县| 长丰县| 宜丰县| 平江县|